  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/09.40.27.0008.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    InverseJacobiDC[z, m] == (-(I/Sqrt[m])) InverseJacobiND[z, 1 - 1/m] /; 
 z > 0 && m > 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiDC", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " "]], SqrtBox["m"]]]], RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", RowBox[List["1", "-", FractionBox["1", "m"]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msup>  <mi> dc </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mi> ⅈ </mi>  <msqrt>  <mi> m </mi>  </msqrt>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> nd </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mi> m </mi>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> m </mi>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> InverseJacobiDC </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <power />  <ci> m </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> InverseJacobiND </ci>  <ci> z </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <gt />  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <gt />  <ci> m </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiDC", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", RowBox[List["1", "-", FractionBox["1", "m"]]]]], "]"]]]], SqrtBox["m"]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |