|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.41.02.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseJacobiDN[z, m] == Integrate[1/(Sqrt[1 - t^2] Sqrt[t^2 + m - 1]),
{t, z, 1}] /; -1 < z < 1 && z^2 + m > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[SubsuperscriptBox["\[Integral]", "z", "1"], RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["t", "2"]]]], " ", SqrtBox[RowBox[List[SuperscriptBox["t", "2"], "+", "m", "-", "1"]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], "/;", " ", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]], "\[And]", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], "+", "m"]], ">", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> dn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mi> z </mi> <mn> 1 </mn> </msubsup> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> t </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> < </mo> <mi> z </mi> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> m </mi> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> InverseJacobiDN </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <ci> z </ci> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <gt /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "z", "1"], RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["t", "2"]]]], " ", SqrtBox[RowBox[List[SuperscriptBox["t", "2"], "+", "m", "-", "1"]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]], "&&", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], "+", "m"]], ">", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|