html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiDN

 http://functions.wolfram.com/09.41.27.0002.01

 Input Form

 InverseJacobiDN[z, m] == (1/Sqrt[m - 1]) InverseJacobiCD[z, 1/(1 - m)] /; -1 < z < 1 && m > 1

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["m", "-", "1"]]]], RowBox[List["InverseJacobiCD", "[", RowBox[List["z", ",", FractionBox["1", RowBox[List["1", "-", "m"]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]], "\[And]", RowBox[List["m", ">", "1"]]]]]]]]

 MathML Form

 dn - 1 ( z m ) 1 m - 1 cd - 1 ( z 1 1 - m ) /; - 1 < z < 1 m > 1 Condition InverseJacobiDN z m 1 m -1 1 2 -1 InverseJacobiCD z 1 1 -1 m -1 -1 z 1 m 1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["InverseJacobiCD", "[", RowBox[List["z", ",", FractionBox["1", RowBox[List["1", "-", "m"]]]]], "]"]], SqrtBox[RowBox[List["m", "-", "1"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]], "&&", RowBox[List["m", ">", "1"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29