| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/09.41.27.0018.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | InverseJacobiDN[z, m] == ((Sqrt[1 - z^2] JacobiCS[InverseJacobiDN[z, m], m])/
    Sqrt[-1 + m + z^2]) ((-(1/Sqrt[-1 + m + z^2])) 
     Sqrt[(-1 + m + z^2)/(-1 + m)] EllipticF[ArcSin[z], 1/(1 - m)] + 
    (1/Sqrt[m]) Sqrt[m/(-1 + m)] EllipticK[1/(1 - m)]) /; 
  !Exists[\[Tau], {Element[\[Tau], Reals], 0 < \[Tau] < 1}, 
   Im[1 - (1 + \[Tau] (z - 1))^2] == 0 && 1 - (1 + \[Tau] (z - 1))^2 < 0 && 
    Im[(1 + \[Tau] (z - 1))^2 + m - 1] == 0 && 
    (1 + \[Tau] (z - 1))^2 + m - 1 < 0] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m", "+", SuperscriptBox["z", "2"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m", "+", SuperscriptBox["z", "2"]]]]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "m", "+", SuperscriptBox["z", "2"]]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", "z", "]"]], ",", FractionBox["1", RowBox[List["1", "-", "m"]]]]], "]"]]]], "+", RowBox[List[FractionBox["1", SqrtBox["m"]], SqrtBox[FractionBox["m", RowBox[List[RowBox[List["-", "1"]], "+", "m"]]]], " ", RowBox[List["EllipticK", "[", FractionBox["1", RowBox[List["1", "-", "m"]]], "]"]]]]]], ")"]]]]]], "/;", " ", RowBox[List["Not", "[", RowBox[List["Exists", "[", RowBox[List["\[Tau]", ",", " ", RowBox[List["{", RowBox[List[RowBox[List["\[Tau]", "\[Element]", "Reals"]], ",", " ", RowBox[List["0", "<", "\[Tau]", "<", "1"]]]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["Im", "[", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[Tau]", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]]]], ")"]], "2"]]], "]"]], "\[Equal]", "0"]], "\[And]", RowBox[List[RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[Tau]", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]]]], ")"]], "2"]]], "<", "0"]], "\[And]", RowBox[List[RowBox[List["Im", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[Tau]", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]]]], ")"]], "2"], "+", "m", "-", "1"]], "]"]], "\[Equal]", "0"]], "\[And]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[Tau]", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]]]], ")"]], "2"], "+", "m", "-", "1"]], "<", "0"]]]]]], "]"]], "]"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msup>  <mi> dn </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> cs </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> dn </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mi> m </mi>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> m </mi>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> m </mi>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> F </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> sin </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ❘ </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> m </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mo> ¬ </mo>  <mrow>  <msub>  <mo> ∃ </mo>  <mrow>  <mi> τ </mi>  <mo> , </mo>  <mrow>  <mo> { </mo>  <mrow>  <mrow>  <mi> τ </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℝ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation>  </semantics>  </mrow>  <mo> , </mo>  <mrow>  <mn> 0 </mn>  <mo> < </mo>  <mi> τ </mi>  <mo> < </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  </msub>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> Im </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> τ </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> τ </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> < </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Im </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> τ </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> τ </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> < </mo>  <mn> 0 </mn>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> InverseJacobiDN </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> JacobiCS </ci>  <apply>  <ci> InverseJacobiDN </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> m </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> EllipticF </ci>  <apply>  <arcsin />  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <not />  <apply>  <exists />  <bvar>  <ci> τ </ci>  </bvar>  <bvar>  <list>  <apply>  <in />  <ci> τ </ci>  <reals />  </apply>  <apply>  <lt />  <cn type='integer'> 0 </cn>  <ci> τ </ci>  <cn type='integer'> 1 </cn>  </apply>  </list>  </bvar>  <apply>  <and />  <apply>  <eq />  <apply>  <imaginary />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> τ </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <lt />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> τ </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <eq />  <apply>  <imaginary />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> τ </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <lt />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> τ </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiDN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["InverseJacobiDN", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "m", "+", SuperscriptBox["z", "2"]]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", "z", "]"]], ",", FractionBox["1", RowBox[List["1", "-", "m"]]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m", "+", SuperscriptBox["z", "2"]]]]]]], "+", FractionBox[RowBox[List[SqrtBox[FractionBox["m", RowBox[List[RowBox[List["-", "1"]], "+", "m"]]]], " ", RowBox[List["EllipticK", "[", FractionBox["1", RowBox[List["1", "-", "m"]]], "]"]]]], SqrtBox["m"]]]], ")"]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m", "+", SuperscriptBox["z", "2"]]]]], "/;", RowBox[List["!", RowBox[List[SubscriptBox["\[Exists]", RowBox[List["\[Tau]", ",", RowBox[List["{", RowBox[List[RowBox[List["\[Tau]", "\[Element]", "Reals"]], ",", RowBox[List["0", "<", "\[Tau]", "<", "1"]]]], "}"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Im", "[", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[Tau]", " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]]]], ")"]], "2"]]], "]"]], "\[Equal]", "0"]], "&&", RowBox[List[RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[Tau]", " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]]]], ")"]], "2"]]], "<", "0"]], "&&", RowBox[List[RowBox[List["Im", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[Tau]", " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]]]], ")"]], "2"], "+", "m", "-", "1"]], "]"]], "\[Equal]", "0"]], "&&", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[Tau]", " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]]]], ")"]], "2"], "+", "m", "-", "1"]], "<", "0"]]]], ")"]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |