|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.42.20.0004.02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[InverseJacobiDS[z, m], m] == (-(1/(2 (-1 + m) m)))
(EllipticE[JacobiAmplitude[InverseJacobiDS[z, m], m], m] +
(-1 + m) InverseJacobiDS[z, m] - (m z JacobiNC[InverseJacobiDS[z, m], m])/
(m + z^2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "m"], RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "m"]]]]], RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "-", FractionBox[RowBox[List["m", " ", "z", " ", RowBox[List["JacobiNC", "[", RowBox[List[RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], RowBox[List["m", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mo> ∂ </mo> <mrow> <msup> <mi> ds </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <mi> m </mi> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ds </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> ds </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mi> nc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ds </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> m </mi> </mrow> </mfrac> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> m </ci> </bvar> <apply> <ci> InverseJacobiDS </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ci> EllipticE </ci> <apply> <ci> JacobiAmplitude </ci> <apply> <ci> InverseJacobiDS </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <ci> m </ci> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> InverseJacobiDS </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> z </ci> <apply> <ci> JacobiNC </ci> <apply> <ci> InverseJacobiDS </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["m_"]]], RowBox[List["InverseJacobiDS", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "-", FractionBox[RowBox[List["m", " ", "z", " ", RowBox[List["JacobiNC", "[", RowBox[List[RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], RowBox[List["m", "+", SuperscriptBox["z", "2"]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "m"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|