|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.42.20.0015.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[InverseJacobiDS[z, m], {z, n}] == KroneckerDelta[n] InverseJacobiDS[z, m] -
((Sqrt[-1 + m + z^2] JacobiNC[InverseJacobiDS[z, m], m])/Sqrt[m + z^2])
D[1/(Sqrt[z^2 + m] Sqrt[z^2 + m - 1]), {z, n - 1}] /;
Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m", "+", SuperscriptBox["z", "2"]]]], " ", RowBox[List["JacobiNC", "[", RowBox[List[RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], SqrtBox[RowBox[List["m", "+", SuperscriptBox["z", "2"]]]]], RowBox[List["D", "[", RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "m"]]], " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "m", "-", "1"]]]]]], ",", RowBox[List["{", RowBox[List["z", ",", RowBox[List["n", "-", "1"]]]], "}"]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <mrow> <msup> <mi> ds </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> <mo> ⁢ </mo> <mrow> <msup> <mi> ds </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> nc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ds </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> m </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> InverseJacobiDS </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> n </ci> </apply> <apply> <ci> InverseJacobiDS </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> JacobiNC </ci> <apply> <ci> InverseJacobiDS </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </degree> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["InverseJacobiDS", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], " ", RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m", "+", SuperscriptBox["z", "2"]]]], " ", RowBox[List["JacobiNC", "[", RowBox[List[RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z", ",", RowBox[List["n", "-", "1"]]]], "}"]]]]], FractionBox["1", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "m"]]], " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "m", "-", "1"]]]]]]]]]], SqrtBox[RowBox[List["m", "+", SuperscriptBox["z", "2"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|