|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.42.27.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseJacobiDS[z, m] == (I/Sqrt[1 - m]) InverseJacobiCS[(I z)/Sqrt[1 - m],
1/(1 - m)] /; Element[z, Reals] && m > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[FractionBox["\[ImaginaryI]", SqrtBox[RowBox[List["1", "-", "m"]]]], RowBox[List["InverseJacobiCS", "[", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox[RowBox[List["1", "-", "m"]]]], ",", FractionBox["1", RowBox[List["1", "-", "m"]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["z", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", ">", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> ds </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mi> ⅈ </mi> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> cs </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> ❘ </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> z </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> InverseJacobiDS </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> InverseJacobiCS </ci> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> z </ci> <reals /> </apply> <apply> <gt /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiDS", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["InverseJacobiCS", "[", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox[RowBox[List["1", "-", "m"]]]], ",", FractionBox["1", RowBox[List["1", "-", "m"]]]]], "]"]]]], SqrtBox[RowBox[List["1", "-", "m"]]]], "/;", RowBox[List[RowBox[List["z", "\[Element]", "Reals"]], "&&", RowBox[List["m", ">", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|