|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.46.20.0017.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[InverseJacobiSC[z, m], {m, 3}] ==
((-(1 + z^2)) (-1 + (-1 + m) z^2) ((8 - 23 m + 23 m^2) (-1 + (-1 + m) z^2)
EllipticE[JacobiAmplitude[InverseJacobiSC[z, m], m], m] +
(-1 + m) (m z Sqrt[(1 + z^2 - m z^2)/(1 + z^2)] +
(7 - 11 m + 7 z^2 - 18 m z^2 + 11 m^2 z^2)
EllipticF[JacobiAmplitude[InverseJacobiSC[z, m], m], m])) -
15 (-1 + m)^3 (1 + z^2) (-1 + (-1 + m) z^2)^2 InverseJacobiSC[z, m] +
m z (23 m^4 z^4 + 5 (1 + z^2)^2 - m^3 z^2 (35 + 59 z^2) +
3 m^2 (5 + 20 z^2 + 18 z^4) - m (12 + 35 z^2 + 23 z^4))
JacobiND[InverseJacobiSC[z, m], m])/(8 (-1 + m)^3 m^3 (1 + z^2)
(-1 + (-1 + m) z^2)^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["m", ",", "3"]], "}"]]], RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["8", "-", RowBox[List["23", " ", "m"]], "+", RowBox[List["23", " ", SuperscriptBox["m", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["m", " ", "z", " ", SqrtBox[FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"], "-", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["7", "-", RowBox[List["11", " ", "m"]], "+", RowBox[List["7", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["18", " ", "m", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["11", " ", SuperscriptBox["m", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "3"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], "2"], " ", RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]]]], "+", RowBox[List["m", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["23", " ", SuperscriptBox["m", "4"], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]], "-", RowBox[List[SuperscriptBox["m", "3"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["35", "+", RowBox[List["59", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List["3", " ", SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["20", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["18", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], "-", RowBox[List["m", " ", RowBox[List["(", RowBox[List["12", "+", RowBox[List["35", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["23", " ", SuperscriptBox["z", "4"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["JacobiND", "[", RowBox[List[RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "3"], " ", SuperscriptBox["m", "3"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], "2"]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mn> 3 </mn> </msup> <mrow> <msup> <mi> sc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo>  </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 15 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> sc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 23 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 23 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 18 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 23 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mi> m </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 59 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 35 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 18 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 23 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 12 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> nd </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> m </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> InverseJacobiSC </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -15 </cn> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> InverseJacobiSC </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 23 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 23 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <ci> JacobiAmplitude </ci> <apply> <ci> InverseJacobiSC </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 18 </cn> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <ci> JacobiAmplitude </ci> <apply> <ci> InverseJacobiSC </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> m </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 23 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 59 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 35 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 18 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 23 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 12 </cn> </apply> </apply> </apply> </apply> <apply> <ci> JacobiND </ci> <apply> <ci> InverseJacobiSC </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["m_", ",", "3"]], "}"]]]]], RowBox[List["InverseJacobiSC", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["8", "-", RowBox[List["23", " ", "m"]], "+", RowBox[List["23", " ", SuperscriptBox["m", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["m", " ", "z", " ", SqrtBox[FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"], "-", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["7", "-", RowBox[List["11", " ", "m"]], "+", RowBox[List["7", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["18", " ", "m", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["11", " ", SuperscriptBox["m", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "3"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], "2"], " ", RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]]]], "+", RowBox[List["m", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["23", " ", SuperscriptBox["m", "4"], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]], "-", RowBox[List[SuperscriptBox["m", "3"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["35", "+", RowBox[List["59", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List["3", " ", SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["20", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["18", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], "-", RowBox[List["m", " ", RowBox[List["(", RowBox[List["12", "+", RowBox[List["35", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["23", " ", SuperscriptBox["z", "4"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["JacobiND", "[", RowBox[List[RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]]]], RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "3"], " ", SuperscriptBox["m", "3"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], "2"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|