|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.46.27.0014.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseJacobiSC[z, m] == (-(Sqrt[Subscript[z, 2]^2]/Subscript[z, 2]))
EllipticLog[{Subscript[z, 1], Subscript[z, 2]}, {a, b}] /;
{a, b, Subscript[z, 1]} == {2 - m, 1 - m, 1/z^2} &&
Subscript[z, 1]^3 + a Subscript[z, 1]^2 + b Subscript[z, 1] -
Subscript[z, 2]^2 == 0 && z > 0 && m < 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiSC", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[SubsuperscriptBox["z", "2", "2"]], " "]], SubscriptBox["z", "2"]]]], RowBox[List["EllipticLog", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", SubscriptBox["z", "1"]]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["2", "-", "m"]], ",", RowBox[List["1", "-", "m"]], " ", ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "}"]]]], "\[And]", RowBox[List[RowBox[List[SubsuperscriptBox["z", "1", "3"], "+", RowBox[List["a", " ", SubsuperscriptBox["z", "1", "2"]]], "+", RowBox[List["b", " ", SubscriptBox["z", "1"]]], "-", SubsuperscriptBox["z", "2", "2"]]], "\[Equal]", "0"]], "\[And]", RowBox[List["z", ">", "0"]], "\[And]", RowBox[List["m", "<", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msqrt> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </msqrt> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mi> elog </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ; </mo> <mi> a </mi> </mrow> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> z </mi> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> InverseJacobiSC </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> elog </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> CompoundExpression </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> <ci> b </ci> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <list> <ci> a </ci> <ci> b </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </list> </apply> <apply> <eq /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiSC", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[SubsuperscriptBox["zz", "2", "2"]], " ", RowBox[List["EllipticLog", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["zz", "1"], ",", SubscriptBox["zz", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]]]], SubscriptBox["zz", "2"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", SubscriptBox["zz", "1"]]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["2", "-", "m"]], ",", RowBox[List["1", "-", "m"]], ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "}"]]]], "&&", RowBox[List[RowBox[List[SubsuperscriptBox["zz", "1", "3"], "+", RowBox[List["a", " ", SubsuperscriptBox["zz", "1", "2"]]], "+", RowBox[List["b", " ", SubscriptBox["zz", "1"]]], "-", SubsuperscriptBox["zz", "2", "2"]]], "\[Equal]", "0"]], "&&", RowBox[List["z", ">", "0"]], "&&", RowBox[List["m", "<", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|