|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.47.20.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[InverseJacobiSD[z, m], {z, n}] ==
((2^(-1 + n) Pi z^(-1 + n) (n - 1)! JacobiCN[InverseJacobiSD[z, m], m])/
(1 + (-1 + m) z^2))
Sum[(((m - 1)^(n - j - 1) m^j (1 + (m - 1) z^2)^(1 + j - n))/
((1 + m z^2)^j (j! (n - j - 1)! Gamma[1/2 - j] Gamma[3/2 + j - n])))
Hypergeometric2F1[(1 - j)/2, -(j/2), 1/2 - j, 1 + 1/(m z^2)]
Hypergeometric2F1[(2 + j - n)/2, (1 + j - n)/2, 3/2 + j - n,
1 + 1/((m - 1) z^2)], {j, 0, n - 1}] /; Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["InverseJacobiSD", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]], " ", RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["InverseJacobiSD", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], RowBox[List["n", "-", "j", "-", "1"]]], " ", SuperscriptBox["m", "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], RowBox[List["1", "+", "j", "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]], ")"]], RowBox[List["-", "j"]]], " "]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "j", "-", "1"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "j", "-", "n"]], "]"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["1", "-", "j"]], "2"], ",", RowBox[List["-", FractionBox["j", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "-", "j"]], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["2", "+", "j", "-", "n"]], "2"], ",", FractionBox[RowBox[List["1", "+", "j", "-", "n"]], "2"], ",", RowBox[List[FractionBox["3", "2"], "+", "j", "-", "n"]], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]]]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <mrow> <msup> <mi> sd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> m </mi> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> j </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> j </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> j </mi> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["1", "-", "j"]], "2"], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox["j", "2"]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["1", "2"], "-", "j"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List["1", "+", FractionBox["1", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> j </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> j </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["j", "-", "n", "+", "2"]], "2"], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["j", "-", "n", "+", "1"]], "2"], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["j", "-", "n", "+", FractionBox["3", "2"]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List["1", "+", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> InverseJacobiSD </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <pi /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> JacobiCN </ci> <apply> <ci> InverseJacobiSD </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> m </ci> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> j </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["InverseJacobiSD", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]], " ", RowBox[List["JacobiCN", "[", RowBox[List[RowBox[List["InverseJacobiSD", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], RowBox[List["n", "-", "j", "-", "1"]]], " ", SuperscriptBox["m", "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], RowBox[List["1", "+", "j", "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]], ")"]], RowBox[List["-", "j"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["1", "-", "j"]], "2"], ",", RowBox[List["-", FractionBox["j", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "-", "j"]], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "j", "-", "n"]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "j", "-", "n"]], ")"]]]], ",", RowBox[List[FractionBox["3", "2"], "+", "j", "-", "n"]], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]]]], "]"]]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "j", "-", "1"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "j", "-", "n"]], "]"]]]]]]]]], RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|