|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.47.21.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[InverseJacobiSD[z, m], m] ==
2 I Sqrt[m - 1] (EllipticE[I ArcSinh[Sqrt[m - 1] z], m/(m - 1)] -
EllipticF[I ArcSinh[Sqrt[m - 1] z], m/(m - 1)]) +
(1/(z Sqrt[1 + (m - 1) z^2])) (-2 Sqrt[1 + (m - 1) z^2] +
2 Sqrt[1 + m z^2] + 2 (m - 1) z^2 Sqrt[1 + m z^2] -
Sqrt[1 + (m - 1) z^2] Log[(1/4) (2 + (2 m - 1) z^2 +
2 Sqrt[1 + (m - 1) z^2] Sqrt[1 + m z^2])]) /; z > 0 && m > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["InverseJacobiSD", "[", RowBox[List["z", ",", "m"]], "]"]], RowBox[List["\[DifferentialD]", "m"]]]]]], "\[Equal]", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["m", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["m", "-", "1"]]], " ", "z"]], "]"]]]], ",", FractionBox["m", RowBox[List["m", "-", "1"]]]]], "]"]], "-", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["m", "-", "1"]]], " ", "z"]], "]"]]]], ",", FractionBox["m", RowBox[List["m", "-", "1"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["z", " ", SqrtBox[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]]]]], ")"]]]], "]"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> sd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> m </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mfrac> <mi> m </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mfrac> <mi> m </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> z </mi> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> m </ci> </bvar> <apply> <ci> InverseJacobiSD </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <plus /> <apply> <ci> EllipticE </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ln /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["InverseJacobiSD", "[", RowBox[List["z_", ",", "m_"]], "]"]], RowBox[List["\[DifferentialD]", "m_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["m", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["m", "-", "1"]]], " ", "z"]], "]"]]]], ",", FractionBox["m", RowBox[List["m", "-", "1"]]]]], "]"]], "-", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["m", "-", "1"]]], " ", "z"]], "]"]]]], ",", FractionBox["m", RowBox[List["m", "-", "1"]]]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]]]]], ")"]]]], "]"]]]]]], RowBox[List["z", " ", SqrtBox[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|