html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 InverseJacobiSN

 http://functions.wolfram.com/09.48.27.0005.01

 Input Form

 InverseJacobiSN[z, m] == I InverseJacobiCS[I/z, 1 - m] /; z > 0 && Element[m, \[DoubleStruckCapitalR]]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["InverseJacobiCS", "[", RowBox[List[FractionBox["\[ImaginaryI]", "z"], ",", RowBox[List["1", "-", "m"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "\[And]", RowBox[List["m", "\[Element]", "\[DoubleStruckCapitalR]"]]]]]]]]

 MathML Form

 sn - 1 ( z m ) K ( m ) + m dn - 1 ( z m - 1 m ) /; z < 0 m > 1 Condition InverseJacobiSN z m EllipticK m m 1 2 -1 InverseJacobiDN z m -1 m -1 z 0 m 1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiSN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["InverseJacobiCS", "[", RowBox[List[FractionBox["\[ImaginaryI]", "z"], ",", RowBox[List["1", "-", "m"]]]], "]"]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "&&", RowBox[List["m", "\[Element]", "\[DoubleStruckCapitalR]"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29