| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/09.48.27.0017.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | InverseJacobiSN[z, m] == (-(Sqrt[Subscript[z, 2]^2]/Subscript[z, 2])) 
   EllipticLog[{Subscript[z, 1], Subscript[z, 2]}, {a, b}] /; 
 {a, b, Subscript[z, 1]} == {-m - 1, m, 1/z^2} && 
  Subscript[z, 1]^3 + a Subscript[z, 1]^2 + b Subscript[z, 1] - 
    Subscript[z, 2]^2 == 0 && z > 0 && m < 1 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiSN", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[SubsuperscriptBox["z", "2", "2"]], " "]], SubscriptBox["z", "2"]]]], RowBox[List["EllipticLog", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", SubscriptBox["z", "1"]]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", "m"]], "-", "1"]], ",", "m", " ", ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "}"]]]], "\[And]", RowBox[List[RowBox[List[SubsuperscriptBox["z", "1", "3"], "+", RowBox[List["a", " ", SubsuperscriptBox["z", "1", "2"]]], "+", RowBox[List["b", " ", SubscriptBox["z", "1"]]], "-", SubsuperscriptBox["z", "2", "2"]]], "\[Equal]", "0"]], "\[And]", RowBox[List["z", ">", "0"]], "\[And]", RowBox[List["m", "<", "1"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msup>  <mi> sn </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <msqrt>  <msubsup>  <mi> z </mi>  <mn> 2 </mn>  <mn> 2 </mn>  </msubsup>  </msqrt>  <msub>  <mi> z </mi>  <mn> 2 </mn>  </msub>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> elog </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mrow>  <msub>  <mi> z </mi>  <mn> 2 </mn>  </msub>  <mo> ; </mo>  <mi> a </mi>  </mrow>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> a </mi>  <mo> , </mo>  <mi> b </mi>  <mo> , </mo>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mi> m </mi>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <msubsup>  <mi> z </mi>  <mn> 1 </mn>  <mn> 3 </mn>  </msubsup>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <msubsup>  <mi> z </mi>  <mn> 1 </mn>  <mn> 2 </mn>  </msubsup>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msub>  <mi> z </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> - </mo>  <msubsup>  <mi> z </mi>  <mn> 2 </mn>  <mn> 2 </mn>  </msubsup>  </mrow>  <mo> ⩵ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> z </mi>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> m </mi>  <mo> < </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> InverseJacobiSN </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> elog </ci>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> CompoundExpression </ci>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> a </ci>  </apply>  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <eq />  <list>  <ci> a </ci>  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <ci> m </ci>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </list>  </apply>  <apply>  <eq />  <apply>  <plus />  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <ci> a </ci>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <gt />  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <lt />  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiSN", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[SubsuperscriptBox["zz", "2", "2"]], " ", RowBox[List["EllipticLog", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["zz", "1"], ",", SubscriptBox["zz", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]]]], SubscriptBox["zz", "2"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", SubscriptBox["zz", "1"]]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", "m"]], "-", "1"]], ",", "m", ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "}"]]]], "&&", RowBox[List[RowBox[List[SubsuperscriptBox["zz", "1", "3"], "+", RowBox[List["a", " ", SubsuperscriptBox["zz", "1", "2"]]], "+", RowBox[List["b", " ", SubscriptBox["zz", "1"]]], "-", SubsuperscriptBox["zz", "2", "2"]]], "\[Equal]", "0"]], "&&", RowBox[List["z", ">", "0"]], "&&", RowBox[List["m", "<", "1"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |