Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
InverseWeierstrassP






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseWeierstrassP[{z1,z2},{g2,g3}] > Differentiation > Low-order differentiation





http://functions.wolfram.com/09.23.20.0003.01









  


  










Input Form





D[InverseWeierstrassP[{Subscript[z, 1], Subscript[z, 2]}, {Subscript[g, 2], Subscript[g, 3]}], {Subscript[z, 1], 2}] == (Subscript[g, 2] - 12 WeierstrassP[InverseWeierstrassP[Subscript[z, 1], {Subscript[g, 2], Subscript[g, 3]}], {Subscript[g, 2], Subscript[g, 3]}]^2)/ (2 WeierstrassPPrime[InverseWeierstrassP[Subscript[z, 1], {Subscript[g, 2], Subscript[g, 3]}], {Subscript[g, 2], Subscript[g, 3]}]^3) /; Subscript[z, 2] == Sqrt[4 Subscript[z, 1]^3 - Subscript[g, 2] Subscript[z, 1] - Subscript[g, 3]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List[SubscriptBox["z", "1"], ",", "2"]], "}"]]], RowBox[List["InverseWeierstrassP", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["g", "2"], "-", RowBox[List["12", " ", SuperscriptBox[RowBox[List["WeierstrassP", "[", RowBox[List[RowBox[List["InverseWeierstrassP", "[", RowBox[List[SubscriptBox["z", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "2"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", SuperscriptBox[RowBox[List["WeierstrassPPrime", "[", RowBox[List[RowBox[List["InverseWeierstrassP", "[", RowBox[List[SubscriptBox["z", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "3"]]], ")"]]]]]], "/;", RowBox[List[SubscriptBox["z", "2"], "\[Equal]", SqrtBox[RowBox[List[RowBox[List["4", " ", SubsuperscriptBox["z", "1", "3"]]], "-", RowBox[List[SubscriptBox["g", "2"], " ", SubscriptBox["z", "1"]]], "-", SubscriptBox["g", "3"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <mrow> <msup> <mi> &#8472; </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> </mfrac> <mo> &#10869; </mo> <mfrac> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <msup> <mi> &#8472; </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <msup> <mi> &#8472; </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </msqrt> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> InverseWeierstrassP </ci> <list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </list> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> WeierstrassP </ci> <apply> <ci> InverseWeierstrassP </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <apply> <ci> InverseWeierstrassP </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["z_", "1"], ",", "2"]], "}"]]]]], RowBox[List["InverseWeierstrassP", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SubscriptBox["gg", "2"], "-", RowBox[List["12", " ", SuperscriptBox[RowBox[List["WeierstrassP", "[", RowBox[List[RowBox[List["InverseWeierstrassP", "[", RowBox[List[SubscriptBox["zz", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "2"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["WeierstrassPPrime", "[", RowBox[List[RowBox[List["InverseWeierstrassP", "[", RowBox[List[SubscriptBox["zz", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "3"]]]], "/;", RowBox[List[SubscriptBox["z", "2"], "\[Equal]", SqrtBox[RowBox[List[RowBox[List["4", " ", SubsuperscriptBox["zz", "1", "3"]]], "-", RowBox[List[SubscriptBox["gg", "2"], " ", SubscriptBox["zz", "1"]]], "-", SubscriptBox["gg", "3"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29