html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 JacobiCD

 http://functions.wolfram.com/09.25.03.0025.01

 Input Form

 JacobiCD[z + (Pi k)/2, 0] == Cos[z + (Pi k)/2] /; Element[k, Integers]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiCD", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["\[Pi]", " ", "k"]], "2"]]], ",", "0"]], "]"]], "\[Equal]", RowBox[List["Cos", "[", RowBox[List["z", "+", FractionBox[RowBox[List["\[Pi]", " ", "k"]], "2"]]], "]"]]]], "/;", RowBox[List["k", "\[Element]", "Integers"]]]]]]

 MathML Form

 cd ( z + π k 2 0 ) cos ( z + π k 2 ) /; k TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] Condition JacobiCD z k 2 -1 0 z k 2 -1 k [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiCD", "[", RowBox[List[RowBox[List["z_", "+", FractionBox[RowBox[List["\[Pi]", " ", "k"]], "2"]]], ",", "0"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Cos", "[", RowBox[List["z", "+", FractionBox[RowBox[List["\[Pi]", " ", "k"]], "2"]]], "]"]], "/;", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02