|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.25.08.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiCD[z, m] == ((2 EllipticNomeQ[m]^(1/4))/m^(1/4))
Cos[(Pi z)/(2 EllipticK[m])]
Product[(1 + 2 EllipticNomeQ[m]^(2 k) Cos[(Pi z)/EllipticK[m]] +
EllipticNomeQ[m]^(4 k))/(1 + 2 EllipticNomeQ[m]^(2 k - 1)
Cos[(Pi z)/EllipticK[m]] + EllipticNomeQ[m]^(4 k - 2)),
{k, 1, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["JacobiCD", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["2", " ", RadicalBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], "4"]]], RadicalBox["m", "4"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List["1", "+", RowBox[List["2", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["2", "k"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["EllipticK", "[", "m", "]"]]], "]"]]]], "+", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["4", "k"]]]]], RowBox[List["1", "+", RowBox[List["2", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["2", "k"]], "-", "1"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["EllipticK", "[", "m", "]"]]], "]"]]]], "+", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["4", "k"]], "-", "2"]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> cd </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mtext> </mtext> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mi> q </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mroot> </mrow> <mroot> <mi> m </mi> <mn> 4 </mn> </mroot> </mfrac> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> q </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <mi> K </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <mi> q </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> q </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <mtext> </mtext> <mrow> <mi> K </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <mi> q </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> JacobiCD </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> q </ci> <ci> m </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> cos </ci> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <times /> <ci> K </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> q </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <ci> K </ci> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> q </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> q </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <ci> K </ci> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> q </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiCD", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["2", " ", "k"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["EllipticK", "[", "m", "]"]]], "]"]]]], "+", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["4", " ", "k"]]]]], RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["EllipticK", "[", "m", "]"]]], "]"]]]], "+", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["4", " ", "k"]], "-", "2"]]]]]]]]]], SuperscriptBox["m", RowBox[List["1", "/", "4"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|