|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.20.08.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WeierstrassPHalfPeriodValues[{Subscript[g, 2], Subscript[g, 3]}] ==
(Pi^2/(12 Subscript[\[Omega], 1]^2)) Product[1 - q^(2 n), {n, 1, Infinity}]^
4 {Product[1 + q^(2 n - 1), {n, 1, Infinity}]^8 +
Product[1 - q^(2 n - 1), {n, 1, Infinity}]^8,
Product[1 + q^(2 n - 1), {n, 1, Infinity}]^8 -
2 Product[1 - q^(2 n - 1), {n, 1, Infinity}]^8,
2 Product[1 + q^(2 n - 1), {n, 1, Infinity}]^8 -
Product[1 - q^(2 n - 1), {n, 1, Infinity}]^8}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["WeierstrassPHalfPeriodValues", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], RowBox[List["12", SubsuperscriptBox["\[Omega]", "1", "2"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List["2", "n"]]]]], ")"]]]], ")"]], "4"], RowBox[List["{", " ", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["q", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"]]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["q", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"]]]]], ",", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["q", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"]]]]], "}"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 1 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mstyle scriptlevel='0'> <mo> , </mo> </mstyle> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 2 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mo> , </mo> <mrow> <mstyle scriptlevel='0'> <msub> <mi> e </mi> <mn> 3 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> <mstyle scriptlevel='0'> <mo> } </mo> </mstyle> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> ω </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> q </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> { </mo> <mtext> </mtext> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> q </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> q </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> <mo> , </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> q </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> q </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> q </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> q </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <list> <apply> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <list> <apply> <plus /> <apply> <power /> <apply> <product /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> q </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> q </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <product /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> q </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <product /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> q </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <product /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> q </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <product /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> q </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> </apply> </apply> </list> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassPHalfPeriodValues", "[", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List["2", " ", "n"]]]]], ")"]]]], ")"]], "4"], " ", RowBox[List["{", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["q", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"]]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["q", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"]]]]], ",", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["q", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "8"]]]]], "}"]]]], RowBox[List["12", " ", SubsuperscriptBox["\[Omega]", "1", "2"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|