
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/09.15.16.0016.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
WeierstrassSigma[z, WeierstrassInvariants[{Subscript[\[Omega], 1]/3,
Subscript[\[Omega], 3]}]] ==
Exp[z^2 WeierstrassP[(2 Subscript[\[Omega], 1])/3,
{Subscript[g, 2], Subscript[g, 3]}] - 2 z Subscript[\[Eta], 1]]
WeierstrassSigma[z + (2 Subscript[\[Omega], 1])/3,
{Subscript[g, 2], Subscript[g, 3]}] WeierstrassSigma[
z + (4 Subscript[\[Omega], 1])/3, {Subscript[g, 2], Subscript[g, 3]}]
(WeierstrassSigma[z, {Subscript[g, 2], Subscript[g, 3]}]/
(WeierstrassSigma[(2 Subscript[\[Omega], 1])/3,
{Subscript[g, 2], Subscript[g, 3]}] WeierstrassSigma[
(4 Subscript[\[Omega], 1])/3, {Subscript[g, 2], Subscript[g, 3]}]))
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["WeierstrassSigma", "[", RowBox[List["z", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[FractionBox[SubscriptBox["\[Omega]", "1"], "3"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["WeierstrassP", "[", RowBox[List[FractionBox[RowBox[List["2", SubscriptBox["\[Omega]", "1"]]], "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "-", RowBox[List["2", "z", " ", SubscriptBox["\[Eta]", "1"]]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", SubscriptBox["\[Omega]", "1"]]], "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", SubscriptBox["\[Omega]", "1"]]], "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], RowBox[List[RowBox[List["WeierstrassSigma", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", "/", RowBox[List["(", RowBox[List[RowBox[List["WeierstrassSigma", "[", RowBox[List[FractionBox[RowBox[List["2", SubscriptBox["\[Omega]", "1"]]], "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[FractionBox[RowBox[List["4", SubscriptBox["\[Omega]", "1"]]], "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], ")"]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mi> σ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mfrac> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mn> 3 </mn> </mfrac> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mfrac> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mn> 3 </mn> </mfrac> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Sigma]", "(", RowBox[List[RowBox[List[TagBox["z", Rule[Editable, True]], ";", TagBox[RowBox[List[SubscriptBox["g", "2"], "(", RowBox[List[FractionBox[SubscriptBox["\[Omega]", "1"], "3"], ",", SubscriptBox["\[Omega]", "3"]]], ")"]], Rule[Editable, True]]]], ",", TagBox[RowBox[List[SubscriptBox["g", "3"], "(", RowBox[List[FractionBox[SubscriptBox["\[Omega]", "1"], "3"], ",", SubscriptBox["\[Omega]", "3"]]], ")"]], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> ℘ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mn> 3 </mn> </mfrac> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msub> <mi> η </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mfrac> <mrow> <semantics> <mrow> <mtext> </mtext> <mrow> <mrow> <mi> σ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> σ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[" ", RowBox[List[TagBox[RowBox[List["\[Sigma]", "(", RowBox[List[RowBox[List[TagBox["z", Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]], " ", RowBox[List["\[Sigma]", "(", RowBox[List[RowBox[List[TagBox[RowBox[List["z", "+", FractionBox[RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]], "3"]]], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]]]]]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mi> σ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Sigma]", "(", RowBox[List[RowBox[List[TagBox[RowBox[List["z", "+", FractionBox[RowBox[List["4", " ", SubscriptBox["\[Omega]", "1"]]], "3"]]], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mrow> <semantics> <mrow> <mi> σ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mn> 3 </mn> </mfrac> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Sigma]", "(", RowBox[List[RowBox[List[TagBox[FractionBox[RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]], "3"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mi> σ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mn> 3 </mn> </mfrac> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Sigma]", "(", RowBox[List[RowBox[List[TagBox[FractionBox[RowBox[List["4", " ", SubscriptBox["\[Omega]", "1"]]], "3"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> WeierstrassSigma </ci> <ci> z </ci> <list> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> </apply> <apply> <times /> <apply> <exp /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> WeierstrassP </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> η </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> WeierstrassSigma </ci> <apply> <ci> σ </ci> <apply> <ci> CompoundExpression </ci> <apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <ci> z </ci> </apply> <apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <list> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </list> </apply> <apply> <ci> WeierstrassSigma </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <power /> <apply> <times /> <apply> <ci> WeierstrassSigma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <ci> WeierstrassSigma </ci> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassSigma", "[", RowBox[List["z_", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[FractionBox[SubscriptBox["\[Omega]_", "1"], "3"], ",", SubscriptBox["\[Omega]_", "3"]]], "}"]], "]"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["WeierstrassP", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]], "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "-", RowBox[List["2", " ", "z", " ", SubscriptBox["\[Eta]", "1"]]]]]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["2", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]], "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[RowBox[List["z", "+", FractionBox[RowBox[List["4", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]], "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], RowBox[List[RowBox[List["WeierstrassSigma", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]], "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List[FractionBox[RowBox[List["4", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]], "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|