Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
WeierstrassSigma






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassSigma[z,{g2,g3}] > Differentiation > Low-order differentiation > With respect to g2





http://functions.wolfram.com/09.15.20.0008.01









  


  










Input Form





D[WeierstrassSigma[z, {Subscript[g, 2], Subscript[g, 3]}], {Subscript[g, 2], 2}] == (1/(256 (Subscript[g, 2]^3 - 27 Subscript[g, 3]^2)^2)) (WeierstrassSigma[z, {Subscript[g, 2], Subscript[g, 3]}] (-24 z^2 Subscript[g, 2]^3 Subscript[g, 3] (-4 + z WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}]) - 16 Subscript[g, 2]^4 (-5 + z^2 WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}] + 5 z WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}] - z^2 WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}]^2) - 216 Subscript[g, 2] Subscript[g, 3]^2 (-20 + z^2 WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}] + 14 z WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}] - z^2 WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}]^2) + 1296 Subscript[g, 3]^2 (z^2 Subscript[g, 3] - 3 WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}]^2 - 4 WeierstrassPPrime[z, {Subscript[g, 2], Subscript[g, 3]}] WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}] - 6 WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}] WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}]^2 + WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}]^4) + 9 Subscript[g, 2]^2 Subscript[g, 3] (z^4 Subscript[g, 3] + 32 (z WeierstrassPPrime[z, {Subscript[g, 2], Subscript[g, 3]}] + WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}]^2 (6 - z WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}]) + 3 WeierstrassP[z, {Subscript[g, 2], Subscript[g, 3]}] (-2 + z WeierstrassZeta[z, {Subscript[g, 2], Subscript[g, 3]}])))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", "2"]], "}"]]], RowBox[List["WeierstrassSigma", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["256", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubsuperscriptBox["g", "2", "3"], "-", RowBox[List["27", " ", SubsuperscriptBox["g", "3", "2"]]]]], ")"]], "2"]]]], RowBox[List["(", RowBox[List[RowBox[List["WeierstrassSigma", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "24"]], " ", SuperscriptBox["z", "2"], " ", SubsuperscriptBox["g", "2", "3"], " ", SubscriptBox["g", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List["16", " ", SubsuperscriptBox["g", "2", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "+", RowBox[List["5", " ", "z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "2"]]]]], ")"]]]], "-", RowBox[List["216", " ", SubscriptBox["g", "2"], " ", SubsuperscriptBox["g", "3", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "20"]], "+", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "+", RowBox[List["14", " ", "z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "2"]]]]], ")"]]]], "+", RowBox[List["1296", " ", SubsuperscriptBox["g", "3", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", SubscriptBox["g", "3"]]], "-", RowBox[List["3", " ", SuperscriptBox[RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "2"]]], "-", RowBox[List["4", " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "4"]]], ")"]]]], "+", RowBox[List["9", " ", SubsuperscriptBox["g", "2", "2"], " ", SubscriptBox["g", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", "4"], " ", SubscriptBox["g", "3"]]], "+", RowBox[List["32", " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "2"], " ", RowBox[List["(", RowBox[List["6", "-", RowBox[List["z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <semantics> <mrow> <mi> &#963; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Sigma]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> <mo> - </mo> <mrow> <mn> 27 </mn> <mo> &#8290; </mo> <msubsup> <mi> g </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 16 </mn> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <msubsup> <mi> g </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 6 </mn> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 216 </mn> <mo> &#8290; </mo> <msubsup> <mi> g </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> <mo> &#8290; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 20 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 1296 </mn> <mo> &#8290; </mo> <msubsup> <mi> g </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> &#8472; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> WeierstrassSigma </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </list> </apply> <apply> <times /> <apply> <times /> <apply> <ci> WeierstrassSigma </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -16 </cn> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <ci> z </ci> </apply> <cn type='integer'> -5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <cn type='integer'> -4 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 6 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 216 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 14 </cn> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <ci> z </ci> </apply> <cn type='integer'> -20 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1296 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <power /> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> WeierstrassZeta </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> WeierstrassP </ci> <ci> z </ci> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", "2"]], "}"]]]]], RowBox[List["WeierstrassSigma", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["WeierstrassSigma", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "24"]], " ", SuperscriptBox["z", "2"], " ", SubsuperscriptBox["gg", "2", "3"], " ", SubscriptBox["gg", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List["16", " ", SubsuperscriptBox["gg", "2", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], "+", RowBox[List["5", " ", "z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "2"]]]]], ")"]]]], "-", RowBox[List["216", " ", SubscriptBox["gg", "2"], " ", SubsuperscriptBox["gg", "3", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "20"]], "+", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], "+", RowBox[List["14", " ", "z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "2"]]]]], ")"]]]], "+", RowBox[List["1296", " ", SubsuperscriptBox["gg", "3", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", SubscriptBox["gg", "3"]]], "-", RowBox[List["3", " ", SuperscriptBox[RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "2"]]], "-", RowBox[List["4", " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], " ", SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "4"]]], ")"]]]], "+", RowBox[List["9", " ", SubsuperscriptBox["gg", "2", "2"], " ", SubscriptBox["gg", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", "4"], " ", SubscriptBox["gg", "3"]]], "+", RowBox[List["32", " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], "2"], " ", RowBox[List["(", RowBox[List["6", "-", RowBox[List["z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["WeierstrassP", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["z", " ", RowBox[List["WeierstrassZeta", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["256", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubsuperscriptBox["gg", "2", "3"], "-", RowBox[List["27", " ", SubsuperscriptBox["gg", "3", "2"]]]]], ")"]], "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29