|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.16.06.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WeierstrassSigma[i, z, {Subscript[g, 2], Subscript[g, 3]}] ==
z Exp[-Sum[(z^(2 j)/(2 j)) Sum[If[{m, n} == {0, 0}, 0,
1/(2 m Subscript[\[Omega], 1] + 2 n Subscript[\[Omega], 3])^(2 j)],
{m, -Infinity, Infinity}, {n, -Infinity, Infinity}],
{j, 2, Infinity}]] (-Subscript[e, i] + 1/z^2 +
Sum[(2 j + 1) z^(2 j) Sum[If[{m, n} == {0, 0}, 0,
(2 m Subscript[\[Omega], 1] + 2 n Subscript[\[Omega], 3])^
(-(2 j + 2))], {m, -Infinity, Infinity}, {n, -Infinity, Infinity}],
{j, 1, Infinity}])^(1/2) /; Element[i, {1, 2, 3}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WeierstrassSigma", "[", RowBox[List["i", ",", "z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List["z", " ", RowBox[List["Exp", "[", RowBox[List["-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "2"]], "\[Infinity]"], RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["2", "j"]]], RowBox[List["2", "j"]]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], RowBox[List["2", "j"]]]]]], "]"]]]]]], ")"]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["e", "i"]]], "+", FractionBox["1", SuperscriptBox["z", "2"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "j"]], "+", "1"]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", "j"]]], " ", RowBox[List["(", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", "j"]], "+", "2"]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]], ")"]], RowBox[List["1", "/", "2"]]]]]]], "/;", RowBox[List["i", "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2", ",", "3"]], "}"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> σ </mi> <mi> i </mi> </msub> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <semantics> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox["g", "2"], Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> , </mo> <semantics> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox["g", "3"], Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mtext> </mtext> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <munder> <mrow> <mi> m </mi> <mo> , </mo> <mtext> </mtext> <mrow> <mi> n </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> } </mo> </mrow> <mo> ≠ </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> </mrow> </munder> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> e </mi> <mi> i </mi> </msub> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <munder> <mrow> <mi> m </mi> <mo> , </mo> <mtext> </mtext> <mrow> <mi> n </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> m </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> } </mo> </mrow> <mo> ≠ </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> </mrow> </munder> <mi> ∞ </mi> </munderover> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> i </mi> <mo> ∈ </mo> <mrow> <mo> { </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> } </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> σ </ms> <ms> i </ms> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> z </ms> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 2 </ms> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> g </ms> <ms> 3 </ms> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> Exp </ms> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> = </ms> <ms> 2 </ms> </list> </apply> <ms> ∞ </ms> </apply> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> j </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> j </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> UnderscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> = </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> ∞ </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <ms> n </ms> </list> </apply> <ms> } </ms> </list> </apply> <ms> ≠ </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> 0 </ms> <ms> , </ms> <ms> 0 </ms> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> </apply> <ms> ∞ </ms> </apply> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> m </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 3 </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> j </ms> </list> </apply> </apply> </apply> </list> </apply> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> ] </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> e </ms> <ms> i </ms> </apply> </list> </apply> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> ∞ </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> j </ms> </list> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> j </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> UnderscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> = </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> ∞ </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <ms> n </ms> </list> </apply> <ms> } </ms> </list> </apply> <ms> ≠ </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> 0 </ms> <ms> , </ms> <ms> 0 </ms> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> </apply> <ms> ∞ </ms> </apply> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> m </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <apply> <ci> SubscriptBox </ci> <ms> ω </ms> <ms> 3 </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> j </ms> </list> </apply> <ms> + </ms> <ms> 2 </ms> </list> </apply> </apply> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> / </ms> <ms> 2 </ms> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <ms> i </ms> <ms> ∈ </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> , </ms> <ms> 2 </ms> <ms> , </ms> <ms> 3 </ms> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassSigma", "[", RowBox[List["i_", ",", "z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["z", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "2"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["2", " ", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], RowBox[List["2", " ", "j"]]]]]], "]"]]]]]]]], RowBox[List["2", " ", "j"]]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SubscriptBox["e", "i"]]], "+", FractionBox["1", SuperscriptBox["z", "2"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", " ", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "+", "2"]], ")"]]]]]]], "]"]]]]]]]]]]]]]]], "/;", RowBox[List["i", "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2", ",", "3"]], "}"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|