Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
WeierstrassSigma






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassSigma[n,z,{g2,g3}] > Differentiation > Symbolic differentiation > With respect to z





http://functions.wolfram.com/09.16.20.0003.01









  


  










Input Form





D[WeierstrassSigma[m, z, {Subscript[g, 2], Subscript[g, 3]}], {z, n}] == (-Subscript[\[Eta], m]) WeierstrassSigma[m, z, {Subscript[g, 2], Subscript[g, 3]}] + (((2 Subscript[\[Omega], 1])^(1 - n) Pi^(n - 1/2) Exp[(-Subscript[\[Eta], m]) z])/WeierstrassSigma[ Subscript[\[Omega], m], {Subscript[g, 2], Subscript[g, 3]}]) Product[1/(1 - q^(2 k)), {k, 1, Infinity}]^3 Sum[HypergeometricPFQRegularized[{1/2, 1}, {(1 - j)/2, (2 - j)/2}, ((z + Subscript[\[Omega], m])^2/(2 Subscript[\[Omega], 1])) WeierstrassZeta[Subscript[\[Omega], 1], {Subscript[g, 2], Subscript[g, 3]}]] ((4 Subscript[\[Omega], 1])/ (Pi (z + Subscript[\[Omega], m])))^j Binomial[n, j] Sum[(-1)^k q^(k (k + 1)) (1 + 2 k)^(n - j) Sin[(Pi ((z + Subscript[\[Omega], m]) (1 + 2 k) + (n - j) Subscript[\[Omega], 1]))/(2 Subscript[\[Omega], 1])], {k, 0, Infinity}], {j, 0, n}] /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["WeierstrassSigma", "[", RowBox[List["m", ",", "z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["\[Eta]", "m"]]], RowBox[List["WeierstrassSigma", "[", RowBox[List["m", ",", "z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", SubscriptBox["\[Omega]", "1"]]], ")"]], RowBox[List["1", "-", "n"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["n", "-", FractionBox["1", "2"]]]], RowBox[List["Exp", "[", RowBox[List[RowBox[List["-", SubscriptBox["\[Eta]", "m"]]], " ", "z"]], "]"]]]], RowBox[List["WeierstrassSigma", "[", RowBox[List[SubscriptBox["\[Omega]", "m"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]], SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox["1", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List["2", "k"]]]]]]]], ")"]], "3"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", "j"]], "2"], ",", FractionBox[RowBox[List["2", "-", "j"]], "2"]]], "}"]], ",", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SubscriptBox["\[Omega]", "m"]]], ")"]], "2"], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["4", SubscriptBox["\[Omega]", "1"]]], RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["z", "+", SubscriptBox["\[Omega]", "m"]]], ")"]]]]], ")"]], "j"], RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["q", RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], RowBox[List["n", "-", "j"]]], RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["z", "+", SubscriptBox["\[Omega]", "m"]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "j"]], ")"]], " ", SubscriptBox["\[Omega]", "1"]]]]], ")"]]]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], "]"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <msub> <mi> &#963; </mi> <mi> m </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <msub> <mi> &#951; </mi> <mi> m </mi> </msub> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msub> <mi> &#963; </mi> <mi> m </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> q </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> j </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> j </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <msub> <mi> &#969; </mi> <mi> m </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;j&quot;]], &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, &quot;j&quot;]], &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;z&quot;, &quot;+&quot;, SubscriptBox[&quot;\[Omega]&quot;, &quot;m&quot;]]], &quot;)&quot;]], &quot;2&quot;], &quot; &quot;, TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[RowBox[List[TagBox[SubscriptBox[&quot;\[Omega]&quot;, &quot;1&quot;], Rule[Editable, True]], &quot;;&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;2&quot;], Rule[Editable, True]]]], &quot;,&quot;, TagBox[SubscriptBox[&quot;g&quot;, &quot;3&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, SubscriptBox[&quot;\[Omega]&quot;, &quot;1&quot;]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <semantics> <mi> n </mi> <annotation encoding='Mathematica'> TagBox[&quot;n&quot;, Identity, Rule[Editable, True]] </annotation> </semantics> </mtd> </mtr> <mtr> <mtd> <semantics> <mi> j </mi> <annotation encoding='Mathematica'> TagBox[&quot;j&quot;, Identity, Rule[Editable, True]] </annotation> </semantics> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <msub> <mi> &#969; </mi> <mi> m </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> q </mi> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <msub> <mi> &#969; </mi> <mi> m </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> &#951; </mi> <mi> m </mi> </msub> <mo> &#8290; </mo> <mrow> <msub> <mi> &#963; </mi> <mi> m </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <apply> <ci> Subscript </ci> <ci> &#963; </ci> <ci> m </ci> </apply> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> &#951; </ci> <ci> m </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <apply> <ci> Subscript </ci> <ci> &#963; </ci> <ci> m </ci> </apply> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 1 </cn> </list> <list> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> WeierstrassZeta </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <list> <list> <apply> <ident /> <ci> n </ci> </apply> </list> <list> <apply> <ident /> <ci> j </ci> </apply> </list> </list> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <plus /> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> j </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <ci> k </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> &#951; </ci> <ci> m </ci> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#963; </ci> <ci> m </ci> </apply> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["WeierstrassSigma", "[", RowBox[List["m_", ",", "z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["\[Eta]", "m"]]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List["m", ",", "z", ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]], ")"]], RowBox[List["1", "-", "n"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["n", "-", FractionBox["1", "2"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SubscriptBox["\[Eta]", "m"]]], " ", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox["1", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List["2", " ", "k"]]]]]]]], ")"]], "3"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", "j"]], "2"], ",", FractionBox[RowBox[List["2", "-", "j"]], "2"]]], "}"]], ",", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SubscriptBox["\[Omega]", "m"]]], ")"]], "2"], " ", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["4", " ", SubscriptBox["\[Omega]", "1"]]], RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["z", "+", SubscriptBox["\[Omega]", "m"]]], ")"]]]]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["q", RowBox[List["k", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], RowBox[List["n", "-", "j"]]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["z", "+", SubscriptBox["\[Omega]", "m"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "j"]], ")"]], " ", SubscriptBox["\[Omega]", "1"]]]]], ")"]]]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], "]"]]]]]]]]]]]], RowBox[List["WeierstrassSigma", "[", RowBox[List[SubscriptBox["\[Omega]", "m"], ",", RowBox[List["{", RowBox[List[SubscriptBox["gg", "2"], ",", SubscriptBox["gg", "3"]]], "}"]]]], "]"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29