|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.05.04.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BranchCuts[EllipticF[z, m], z] ==
{SequenceList[{Interval[{ArcCsc[Sqrt[m]] + Pi k, Pi/2 + Pi k}], I},
Element[k, Integers] && Element[m, Reals] && m > 1],
SequenceList[{Interval[{Pi/2 + Pi k, -ArcCsc[Sqrt[m]] + Pi (k + 1)}], -I},
Element[k, Integers] && Element[m, Reals] && m > 1],
SequenceList[{Interval[{Pi/2 + 2 Pi k, Pi/2 + 2 Pi k + I Infinity}], 1},
Element[k, Integers] && !(Element[m, Reals] && 0 < m < 1)] ||
SequenceList[{Interval[{Pi - ArcCsc[Sqrt[m]] + 2 Pi k,
Pi/2 + 2 Pi k + I Infinity}], 1}, Element[k, Integers] &&
Element[m, Reals] && 0 < m < 1],
SequenceList[{Interval[{(3 Pi)/2 + 2 Pi k, (3 Pi)/2 + 2 Pi k +
I Infinity}], -1}, Element[k, Integers] &&
!(Element[m, Reals] && 0 < m < 1)] ||
SequenceList[{Interval[{2 Pi - ArcCsc[Sqrt[m]] + 2 Pi k,
(3 Pi)/2 + 2 Pi k + I Infinity}], -1}, Element[k, Integers] &&
Element[m, Reals] && 0 < m < 1],
SequenceList[{Interval[{Pi/2 + 2 Pi k - I Infinity, Pi/2 + 2 Pi k}], 1},
Element[k, Integers] && !(Element[m, Reals] && 0 < m < 1)] ||
SequenceList[{Interval[{Pi/2 + 2 Pi k - I Infinity,
2 Pi k + ArcCsc[Sqrt[m]]}], 1}, Element[k, Integers] &&
Element[m, Reals] && 0 < m < 1],
SequenceList[{Interval[{(3 Pi)/2 + 2 Pi k - I Infinity,
(3 Pi)/2 + 2 Pi k}], -1}, Element[k, Integers] &&
!(Element[m, Reals] && 0 < m < 1)] ||
SequenceList[{Interval[{(3 Pi)/2 + 2 Pi k - I Infinity,
2 Pi k + Pi + ArcCsc[Sqrt[m]]}], -1}, Element[k, Integers] &&
Element[m, Reals] && 0 < m < 1]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["BranchCuts", "[", RowBox[List[RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", ">", "1"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", ">", "1"]]]]]], "]"]], ",", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["0", "<", "m", "<", "1"]]]], "]"]]]]]], "]"]], "\[Or]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["\[Pi]", "-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["2", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["0", "<", "m", "<", "1"]]]]]], "]"]]]], ",", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["0", "<", "m", "<", "1"]]]], "]"]]]]]], "]"]], "\[Or]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["2", "\[Pi]"]], "-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["2", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["0", "<", "m", "<", "1"]]]]]], "]"]]]], ",", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["0", "<", "m", "<", "1"]]]], "]"]]]]]], "]"]], "\[Or]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[RowBox[List["2", "\[Pi]", " ", "k"]], "+", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["0", "<", "m", "<", "1"]]]]]], "]"]]]], ",", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["0", "<", "m", "<", "1"]]]], "]"]]]]]], "]"]], "\[Or]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[RowBox[List["2", "\[Pi]", " ", "k"]], "+", "\[Pi]", "+", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["0", "<", "m", "<", "1"]]]]]], "]"]]]]]], "}"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> ℬ𝒞 </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> π </mi> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> π </mi> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <msub> <mi> ℬ𝒞 </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> π </mi> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> π </mi> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BranchCuts", "[", RowBox[List[RowBox[List["EllipticF", "[", RowBox[List["z_", ",", "m_"]], "]"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["m", ">", "1"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["m", ">", "1"]]]]]], "]"]], ",", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["0", "<", "m", "<", "1"]]]], ")"]]]]]]]], "]"]], "||", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["\[Pi]", "-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["0", "<", "m", "<", "1"]]]]]], "]"]]]], ",", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["0", "<", "m", "<", "1"]]]], ")"]]]]]]]], "]"]], "||", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Pi]"]], "-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["0", "<", "m", "<", "1"]]]]]], "]"]]]], ",", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["0", "<", "m", "<", "1"]]]], ")"]]]]]]]], "]"]], "||", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", "k"]], "+", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["0", "<", "m", "<", "1"]]]]]], "]"]]]], ",", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["0", "<", "m", "<", "1"]]]], ")"]]]]]]]], "]"]], "||", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", "k"]], "+", "\[Pi]", "+", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["0", "<", "m", "<", "1"]]]]]], "]"]]]]]], "}"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|