Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











EllipticF






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticF[z,m] > Series representations > Other series representations > Expansions F(sin-1(z)|m) at z==infinity





http://functions.wolfram.com/08.05.06.0081.01









  


  










Input Form





EllipticF[ArcSin[z], m] == (-(Sqrt[-z^2]/z)) (EllipticK[1 - m] + (1/2) (1 - (I Sqrt[-z^4])/z^2) I (1 - Sqrt[m] Sqrt[1/m]) EllipticK[m]) - ((Sqrt[1 - z^2] Sqrt[1 - m z^2])/(Sqrt[m] Sqrt[1 - 1/z^2] Sqrt[1 - 1/(m z^2)] z^2)) EllipticF[ArcSin[1/(Sqrt[m] z)], m]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", "z", "]"]], ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]], "+", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]]]], SuperscriptBox["z", "2"]]]], ")"]], "\[ImaginaryI]", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox["m"], SqrtBox[FractionBox["1", "m"]]]]]], ")"]], RowBox[List["EllipticK", "[", "m", "]"]]]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]]], RowBox[List[SqrtBox["m"], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", FractionBox["1", RowBox[List[SqrtBox["m"], " ", "z"]]], "]"]], ",", "m"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> &#8520; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msqrt> <mi> m </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> <mrow> <msqrt> <mi> m </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> m </mi> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> EllipticF </ci> <apply> <arcsin /> <ci> z </ci> </apply> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticF </ci> <apply> <arcsin /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", "z_", "]"]], ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]]]], SuperscriptBox["z", "2"]]]], ")"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox["m"], " ", SqrtBox[FractionBox["1", "m"]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]]], ")"]]]], "z"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", FractionBox["1", RowBox[List[SqrtBox["m"], " ", "z"]]], "]"]], ",", "m"]], "]"]]]], RowBox[List[SqrtBox["m"], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]]], " ", SuperscriptBox["z", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02