|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.05.26.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticF[ArcCot[Sqrt[(2 Subscript[z, 1])/(a + Sqrt[a^2 - 4 b])]],
(2 Sqrt[a^2 - 4 b])/(a + Sqrt[a^2 - 4 b])] ==
(-2 EllipticLog[{Subscript[z, 1], Sqrt[Subscript[z, 1]^3 +
a Subscript[z, 1]^2 + b Subscript[z, 1]]}, {a, b}])/
((2 (a - Sqrt[a^2 - 4 b]))/b)^2^(-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcCot", "[", SqrtBox[FractionBox[RowBox[List["2", " ", SubscriptBox["z", "1"]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]]]], "]"]], ",", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", "2"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]], ")"]]]], "b"], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "2"]]], RowBox[List["EllipticLog", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["z", "1"], ",", SqrtBox[RowBox[List[SubsuperscriptBox["z", "1", "3"], "+", RowBox[List["a", " ", SubsuperscriptBox["z", "1", "2"]]], "+", RowBox[List["b", " ", SubscriptBox["z", "1"]]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mfrac> <mn> 1 </mn> <msqrt> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> b </mi> </mfrac> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mi> elog </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mrow> <msqrt> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </msqrt> <mo> ; </mo> <mi> a </mi> </mrow> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> EllipticF </ci> <apply> <arccot /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> elog </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> CompoundExpression </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> <ci> b </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcCot", "[", SqrtBox[FractionBox[RowBox[List["2", " ", SubscriptBox["z_", "1"]]], RowBox[List["a_", "+", SqrtBox[RowBox[List[SuperscriptBox["a_", "2"], "-", RowBox[List["4", " ", "b_"]]]]]]]]], "]"]], ",", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox["a_", "2"], "-", RowBox[List["4", " ", "b_"]]]]]]], RowBox[List["a_", "+", SqrtBox[RowBox[List[SuperscriptBox["a_", "2"], "-", RowBox[List["4", " ", "b_"]]]]]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", "2"]], " ", FractionBox["1", SqrtBox[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]], ")"]]]], "b"]]], " ", RowBox[List["EllipticLog", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["zz", "1"], ",", SqrtBox[RowBox[List[SubsuperscriptBox["zz", "1", "3"], "+", RowBox[List["a", " ", SubsuperscriptBox["zz", "1", "2"]]], "+", RowBox[List["b", " ", SubscriptBox["zz", "1"]]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|