|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.02.03.0030.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticK[17 - 12 Sqrt[2]] == (2 (2 + Sqrt[2]) Pi^(3/2))/Gamma[-(1/4)]^2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["EllipticK", "[", RowBox[List["17", "-", RowBox[List["12", " ", SqrtBox["2"]]]]], "]"]], "\[Equal]", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["2", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]], SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "4"]]], "]"]], "2"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 17 </mn> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 17 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticK", "[", RowBox[List["17", "-", RowBox[List["12", " ", SqrtBox["2"]]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["2", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]], SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "4"]]], "]"]], "2"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|