|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.06.04.0019.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BranchCuts[EllipticPi[n, z, m], z] ==
{SequenceList[{Interval[{ArcCsc[Sqrt[m]] + Pi k, Pi/2 + Pi k}], I},
Element[k, Integers] && Element[m, Reals] && m > 1 &&
!IntervalMemberQ[Interval[{1, Infinity}], n]],
SequenceList[{Interval[{ArcCsc[Sqrt[m]] + Pi k, ArcCsc[Sqrt[n]] + Pi k}],
I}, Element[k, Integers] && Element[m, Reals] && Element[n, Reals] &&
1 < n < m], SequenceList[
{Interval[{ArcCsc[Sqrt[n]] + Pi k, Pi/2 + Pi k}], I},
Element[k, Integers] && Element[m, Reals] && Element[n, Reals] &&
1 < n < m], SequenceList[
{Interval[{Pi/2 + Pi k, -ArcCsc[Sqrt[m]] + Pi (k + 1)}], -I},
Element[k, Integers] && Element[m, Reals] && m > 1 &&
!IntervalMemberQ[Interval[{1, Infinity}], n]],
SequenceList[{Interval[{Pi/2 + Pi k, -ArcCsc[Sqrt[n]] + Pi (k + 1)}], -I},
Element[k, Integers] && Element[m, Reals] && Element[n, Reals] &&
1 < n < m], SequenceList[{Interval[{-ArcCsc[Sqrt[n]] + Pi (k + 1),
-ArcCsc[Sqrt[m]] + Pi (k + 1)}], -I}, Element[k, Integers] &&
Element[m, Reals] && Element[n, Reals] && 1 < n < m],
SequenceList[{Interval[{ArcCsc[Sqrt[n]] + Pi k, Pi/2 + Pi k}], I},
Element[k, Integers] && !IntervalMemberQ[Interval[{1, Infinity}], m] &&
Element[n, Reals] && n > 1], SequenceList[
{Interval[{ArcCsc[Sqrt[n]] + Pi k, ArcCsc[Sqrt[m]] + Pi k}], I},
Element[k, Integers] && Element[m, Reals] && Element[n, Reals] &&
1 < m < n], SequenceList[
{Interval[{ArcCsc[Sqrt[m]] + Pi k, Pi/2 + Pi k}], I},
Element[k, Integers] && Element[m, Reals] && Element[n, Reals] &&
1 < m < n], SequenceList[
{Interval[{Pi/2 + Pi k, -ArcCsc[Sqrt[n]] + Pi (k + 1)}], -I},
Element[k, Integers] && !IntervalMemberQ[Interval[{1, Infinity}], m] &&
Element[n, Reals] && n > 1], SequenceList[
{Interval[{Pi/2 + Pi k, -ArcCsc[Sqrt[m]] + Pi (k + 1)}], -I},
Element[k, Integers] && Element[m, Reals] && Element[n, Reals] &&
1 < m < n], SequenceList[{Interval[{-ArcCsc[Sqrt[m]] + Pi (k + 1),
-ArcCsc[Sqrt[n]] + Pi (k + 1)}], -I}, Element[k, Integers] &&
Element[m, Reals] && Element[n, Reals] && 1 < m < n],
SequenceList[{Interval[{Pi/2 + 2 Pi k, Pi/2 + 2 Pi k + I Infinity}], 1},
Element[k, Integers]], SequenceList[
{Interval[{(3 Pi)/2 + 2 Pi k, (3 Pi)/2 + 2 Pi k + I Infinity}], -1},
Element[k, Integers]], SequenceList[
{Interval[{Pi/2 + 2 Pi k - I Infinity, Pi/2 + 2 Pi k}], 1},
Element[k, Integers]], SequenceList[
{Interval[{(3 Pi)/2 + 2 Pi k - I Infinity, (3 Pi)/2 + 2 Pi k}], -1},
Element[k, Integers]]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["BranchCuts", "[", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", ">", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["1", ",", "\[Infinity]"]], "}"]], "]"]], ",", "n"]], "]"]], "]"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["1", "<", "n", "<", "m"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["1", "<", "n", "<", "m"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", ">", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["1", ",", "\[Infinity]"]], "}"]], "]"]], ",", "n"]], "]"]], "]"]]]]]], "]"]], ",", "\[IndentingNewLine]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["1", "<", "n", "<", "m"]]]]]], "]"]], ",", "\[IndentingNewLine]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["1", "<", "n", "<", "m"]]]]]], "]"]], ",", "\[IndentingNewLine]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["1", ",", "\[Infinity]"]], "}"]], "]"]], ",", "m"]], "]"]], "]"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", ">", "1"]]]]]], "]"]], ",", "\[IndentingNewLine]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["1", "<", "m", "<", "n"]]]]]], "]"]], ",", "\[IndentingNewLine]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["1", "<", "m", "<", "n"]]]]]], "]"]], ",", "\[IndentingNewLine]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["1", ",", "\[Infinity]"]], "}"]], "]"]], ",", "m"]], "]"]], "]"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", ">", "1"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["1", "<", "m", "<", "n"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["1", "<", "m", "<", "n"]]]]]], "]"]], ",", "\[IndentingNewLine]", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List["k", "\[Element]", "Integers"]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List["k", "\[Element]", "Integers"]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List["k", "\[Element]", "Integers"]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[FractionBox[RowBox[List["3", "\[Pi]"]], "2"], "+", RowBox[List["2", "\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List["k", "\[Element]", "Integers"]]]], "]"]]]], "}"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> ℬ𝒞 </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∉ </mo> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["1", ",", "\[Infinity]"]], ")"]], Function[List[], Reals]] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> n </mi> <mo> < </mo> <mi> m </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> n </mi> <mo> < </mo> <mi> m </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mo> ⁣ </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> n </mi> <mo> < </mo> <mi> m </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> n </mi> <mo> < </mo> <mi> m </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> m </mi> <mo> < </mo> <mi> n </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> m </mi> <mo> < </mo> <mi> n </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <semantics> <mrow> <mo> ( </mo> <mrow> <mo> ⁣ </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["\[InvisibleComma]", RowBox[List["1", ",", "\[Infinity]"]]]], ")"]], Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> m </mi> <mo> < </mo> <mi> n </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> m </mi> <mo> < </mo> <mi> n </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <msub> <mi> ℬ𝒞 </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∉ </mo> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["1", ",", "\[Infinity]"]], ")"]], Function[List[], Reals]] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> n </mi> <mo> < </mo> <mi> m </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> n </mi> <mo> < </mo> <mi> m </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mo> ⁣ </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> n </mi> <mo> < </mo> <mi> m </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> n </mi> <mo> < </mo> <mi> m </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> m </mi> <mo> < </mo> <mi> n </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mi> ⅈ </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> m </mi> <mo> < </mo> <mi> n </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∉ </mo> <semantics> <mrow> <mo> ( </mo> <mrow> <mo> ⁣ </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["\[InvisibleComma]", RowBox[List["1", ",", "\[Infinity]"]]]], ")"]], Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> m </mi> <mo> < </mo> <mi> n </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> < </mo> <mi> m </mi> <mo> < </mo> <mi> n </mi> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mtext>  </mtext> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BranchCuts", "[", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["m", ">", "1"]], "&&", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["1", ",", "\[Infinity]"]], "}"]], "]"]], ",", "n"]], "]"]]]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["1", "<", "n", "<", "m"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["1", "<", "n", "<", "m"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["m", ">", "1"]], "&&", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["1", ",", "\[Infinity]"]], "}"]], "]"]], ",", "n"]], "]"]]]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["1", "<", "n", "<", "m"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["1", "<", "n", "<", "m"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["1", ",", "\[Infinity]"]], "}"]], "]"]], ",", "m"]], "]"]]]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["n", ">", "1"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["1", "<", "m", "<", "n"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "\[ImaginaryI]"]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["1", "<", "m", "<", "n"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["1", ",", "\[Infinity]"]], "}"]], "]"]], ",", "m"]], "]"]]]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["n", ">", "1"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["1", "<", "m", "<", "n"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]], ",", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]], "}"]], "]"]], ",", RowBox[List["-", "\[ImaginaryI]"]]]], "}"]], ",", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["1", "<", "m", "<", "n"]]]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List["k", "\[Element]", "Integers"]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]]]], ",", RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List["k", "\[Element]", "Integers"]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", "1"]], "}"]], ",", RowBox[List["k", "\[Element]", "Integers"]]]], "]"]], ",", RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], ",", RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], "2"], "+", RowBox[List["2", " ", "\[Pi]", " ", "k"]]]]]], "}"]], "]"]], ",", RowBox[List["-", "1"]]]], "}"]], ",", RowBox[List["k", "\[Element]", "Integers"]]]], "]"]]]], "}"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|