
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/08.06.06.0030.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
EllipticPi[n, z, m] == EllipticPi[n, x, m] -
((Pi I Sqrt[n])/(2 Sqrt[n - 1] Sqrt[n - m]))
(1 - Exp[(-Pi) I Floor[Arg[z - x]/(2 Pi)]]) +
Exp[(-Pi) I Floor[Arg[z - x]/(2 Pi)]]
Sum[(1/p!) Sum[(1/j!) Sum[Binomial[j, Subscript[k, 1]]
Sum[((-1)^Subscript[k, 1] 2^(Subscript[k, 1] - j)
Sin[x]^Subscript[k, 1] (2 Subscript[k, 2] + Subscript[k, 1] - j)^
p Binomial[j - Subscript[k, 1], Subscript[k, 2]]
Sum[(Pochhammer[1 - j, 2 (j - i) - 2]/((j - i - 1)! (2 Sin[x])^
(j - 2 i - 1))) Sum[(-1)^Subscript[i, 1] KroneckerDelta[
Subscript[i, 1] + Subscript[i, 2] + Subscript[i, 3] - i]
Multinomial[Subscript[i, 1], Subscript[i, 2], Subscript[i,
3]] n^Subscript[i, 1] m^Subscript[i, 3] Pochhammer[
-Subscript[i, 1], Subscript[i, 1]] Pochhammer[1/2,
Subscript[i, 2]] Pochhammer[1/2, Subscript[i, 3]]
(1 - n Sin[x]^2)^(-1 - Subscript[i, 1]) Cos[x]^
(-2 Subscript[i, 2] - 1) (1 - m Sin[x]^2)^(-(1/2) -
Subscript[i, 3]), {Subscript[i, 1], 0, i},
{Subscript[i, 2], 0, i}, {Subscript[i, 3], 0, i}],
{i, 0, j - 1}])/E^((1/2) I ((p - 2 Subscript[k, 2] -
Subscript[k, 1] + j) Pi + 2 (2 Subscript[k, 2] +
Subscript[k, 1] - j) x)), {Subscript[k, 2], 0,
j - Subscript[k, 1]}], {Subscript[k, 1], 0, j - 1}], {j, 1, p}]
(z - x)^p, {p, 1, Infinity}] /; Element[x, Reals] &&
Element[m, Reals] && Element[n, Reals] && m < 1 < n &&
Pi/2 + Pi u < x < Pi (u + 1) - ArcCsc[Sqrt[n]] && Element[u, Integers]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "x", ",", "m"]], "]"]], "-", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", SqrtBox["n"]]], RowBox[List["2", SqrtBox[RowBox[List["n", "-", "1"]]], " ", SqrtBox[RowBox[List["n", "-", "m"]]]]]], RowBox[List["(", RowBox[List["1", "-", RowBox[List["Exp", "[", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["p", "!"]]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], RowBox[List[FractionBox["1", RowBox[List["j", "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "0"]], RowBox[List["j", "-", "1"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["j", ",", SubscriptBox["k", "1"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "0"]], RowBox[List["j", "-", SubscriptBox["k", "1"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], SubscriptBox["k", "1"]], SuperscriptBox["2", RowBox[List[SubscriptBox["k", "1"], "-", "j"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", "x", "]"]], SubscriptBox["k", "1"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["k", "2"]]], "+", SubscriptBox["k", "1"], "-", "j"]], ")"]], "p"], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", SubscriptBox["k", "2"]]], "-", SubscriptBox["k", "1"], "+", "j"]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["2", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["k", "2"]]], "+", SubscriptBox["k", "1"], "-", "j"]], ")"]], "x"]]]], ")"]]]]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["j", "-", SubscriptBox["k", "1"]]], ",", SubscriptBox["k", "2"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["j", "-", "1"]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "j"]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "-", "i"]], ")"]]]], "-", "2"]]]], "]"]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "i", "-", "1"]], ")"]], "!"]], SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", RowBox[List["Sin", "[", "x", "]"]]]], ")"]], RowBox[List["j", "-", RowBox[List["2", " ", "i"]], "-", "1"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["i", "1"], "=", "0"]], "i"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["i", "2"], "=", "0"]], "i"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["i", "3"], "=", "0"]], "i"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], SubscriptBox["i", "1"]], RowBox[List["KroneckerDelta", "[", RowBox[List[SubscriptBox["i", "1"], "+", SubscriptBox["i", "2"], "+", SubscriptBox["i", "3"], "-", "i"]], "]"]], " ", RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["i", "1"], ",", SubscriptBox["i", "2"], ",", SubscriptBox["i", "3"]]], "]"]], SuperscriptBox["n", SubscriptBox["i", "1"]], SuperscriptBox["m", SubscriptBox["i", "3"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", SubscriptBox["i", "1"]]], ",", SubscriptBox["i", "1"]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", SubscriptBox["i", "2"]]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", SubscriptBox["i", "3"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "x", "]"]], "2"]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["i", "1"]]]], " ", SuperscriptBox[RowBox[List["Cos", "[", "x", "]"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], SubscriptBox["i", "2"]]], "-", "1"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "x", "]"]], "2"]]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", SubscriptBox["i", "3"]]]]]]]]]]]]]], ")"]]]]]]]]]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "p"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", "\[Element]", "Reals"]], "\[And]", RowBox[List["n", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", "<", "1", "<", "n"]], "\[And]", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "u"]]]], "<", "x", "<", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["u", "+", "1"]], ")"]]]], "-", RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]]]]]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> x </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> π </mi> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> π </mi> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> p </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["j", Identity, Rule[Editable, True]]], List[TagBox[SubscriptBox["k", "1"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mi> p </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> p </mi> <mo> - </mo> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> x </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["j", "-", SubscriptBox["k", "1"]]], Identity, Rule[Editable, True]]], List[TagBox[SubscriptBox["k", "2"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <semantics> <mfrac> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> i </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> i </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> <annotation encoding='Mathematica'> TagBox[FractionBox[SubscriptBox[RowBox[List["(", RowBox[List["1", "-", "j"]], ")"]], RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "-", "i"]], ")"]]]], "-", "2"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "i", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", RowBox[List["sin", "(", "x", ")"]]]], ")"]], RowBox[List["j", "-", RowBox[List["2", "i"]], "-", "1"]]]]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> i </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> i </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> i </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> i </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> i </mi> <mn> 3 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> i </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <msub> <mi> i </mi> <mn> 1 </mn> </msub> </msup> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <msub> <mi> i </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> i </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> i </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mi> i </mi> </mrow> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> i </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> i </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> i </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <msub> <mi> i </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> i </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> i </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["i", "1"], "+", SubscriptBox["i", "2"], "+", SubscriptBox["i", "3"]]], ";", SubscriptBox["i", "1"]]], ",", SubscriptBox["i", "2"], ",", SubscriptBox["i", "3"]]], ")"]], Multinomial, Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> n </mi> <msub> <mi> i </mi> <mn> 1 </mn> </msub> </msup> <mo> ⁢ </mo> <msup> <mi> m </mi> <msub> <mi> i </mi> <mn> 3 </mn> </msub> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> i </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <msub> <mi> i </mi> <mn> 1 </mn> </msub> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["i", "1"]]], ")"]], SubscriptBox["i", "1"]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <msub> <mi> i </mi> <mn> 2 </mn> </msub> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], SubscriptBox["i", "2"]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <msub> <mi> i </mi> <mn> 3 </mn> </msub> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], SubscriptBox["i", "3"]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> i </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msub> <mi> i </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> i </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mi> p </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> < </mo> <mn> 1 </mn> <mo> < </mo> <mi> n </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> + </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> < </mo> <mi> x </mi> <mo> < </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> u </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> u </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> x </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <sin /> <ci> x </ci> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <ci> j </ci> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <ci> x </ci> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <apply> <ci> Subscript </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sin /> <ci> x </ci> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 3 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> i </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> i </ci> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> i </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </apply> <apply> <ci> Multinomial </ci> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> m </ci> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <sin /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <cos /> <ci> x </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> i </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <ci> p </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <in /> <ci> m </ci> <reals /> </apply> <apply> <in /> <ci> n </ci> <reals /> </apply> <apply> <lt /> <ci> m </ci> <cn type='integer'> 1 </cn> <ci> n </ci> </apply> <apply> <lt /> <apply> <plus /> <apply> <times /> <pi /> <ci> u </ci> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> x </ci> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <ci> u </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arccsc /> <apply> <power /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> u </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "x", ",", "m"]], "]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", SqrtBox["n"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["n", "-", "1"]]], " ", SqrtBox[RowBox[List["n", "-", "m"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "0"]], RowBox[List["j", "-", "1"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["j", ",", SubscriptBox["k", "1"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "0"]], RowBox[List["j", "-", SubscriptBox["k", "1"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], SubscriptBox["k", "1"]], " ", SuperscriptBox["2", RowBox[List[SubscriptBox["k", "1"], "-", "j"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", "x", "]"]], SubscriptBox["k", "1"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["k", "2"]]], "+", SubscriptBox["k", "1"], "-", "j"]], ")"]], "p"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", SubscriptBox["k", "2"]]], "-", SubscriptBox["k", "1"], "+", "j"]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["k", "2"]]], "+", SubscriptBox["k", "1"], "-", "j"]], ")"]], " ", "x"]]]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["j", "-", SubscriptBox["k", "1"]]], ",", SubscriptBox["k", "2"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["j", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "j"]], ",", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "-", "i"]], ")"]]]], "-", "2"]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["i", "1"], "=", "0"]], "i"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["i", "2"], "=", "0"]], "i"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["i", "3"], "=", "0"]], "i"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], SubscriptBox["i", "1"]], " ", RowBox[List["KroneckerDelta", "[", RowBox[List[SubscriptBox["i", "1"], "+", SubscriptBox["i", "2"], "+", SubscriptBox["i", "3"], "-", "i"]], "]"]], " ", RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["i", "1"], ",", SubscriptBox["i", "2"], ",", SubscriptBox["i", "3"]]], "]"]], " ", SuperscriptBox["n", SubscriptBox["i", "1"]], " ", SuperscriptBox["m", SubscriptBox["i", "3"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", SubscriptBox["i", "1"]]], ",", SubscriptBox["i", "1"]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", SubscriptBox["i", "2"]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", SubscriptBox["i", "3"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "x", "]"]], "2"]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["i", "1"]]]], " ", SuperscriptBox[RowBox[List["Cos", "[", "x", "]"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SubscriptBox["i", "2"]]], "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "x", "]"]], "2"]]]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", SubscriptBox["i", "3"]]]]]]]]]]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "i", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", RowBox[List["Sin", "[", "x", "]"]]]], ")"]], RowBox[List["j", "-", RowBox[List["2", " ", "i"]], "-", "1"]]]]]]]]]]]]]]]], RowBox[List["j", "!"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "p"]]], RowBox[List["p", "!"]]]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["m", "\[Element]", "Reals"]], "&&", RowBox[List["n", "\[Element]", "Reals"]], "&&", RowBox[List["m", "<", "1", "<", "n"]], "&&", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "u"]]]], "<", "x", "<", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["u", "+", "1"]], ")"]]]], "-", RowBox[List["ArcCsc", "[", SqrtBox["n"], "]"]]]]]], "&&", RowBox[List["u", "\[Element]", "Integers"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|