Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Series representations > Generalized power series > Expansions at z==-csc-1(m1/2)+Pi u/;uZ





http://functions.wolfram.com/08.06.06.0073.01









  


  










Input Form





EllipticPi[n, z, m] \[Proportional] (-(1/Sqrt[m])) EllipticPi[n/m, 1/m] - 2 u EllipticPi[n, m] + ((m Sqrt[2])/((n - m) Sqrt[-1 + m])) Sqrt[Sqrt[-1 + m] (z - Subscript[z, 0])] (1 + ((m^2 + 10 n - m (2 + 9 n))/(12 Sqrt[-1 + m] (m - n))) (z - Subscript[z, 0]) + ((m^2 (4 + m (-4 + 9 m)) + 2 m (44 + m (-68 + 15 m)) n + (292 + m (-628 + 345 m)) n^2)/(480 (-1 + m) (m - n)^2)) (z - Subscript[z, 0])^2 + ((15 m^6 + 920 n^3 - m^5 (26 + 21 n) - 4 m n^2 (-502 + 941 n) + m^4 (-12 + 214 n - 1155 n^2) + 2 m^2 n (68 - 2578 n + 2385 n^2) + m^3 (8 - 284 n + 4258 n^2 - 1911 n^3))/(2688 (-1 + m)^(3/2) (m - n)^3)) (z - Subscript[z, 0])^3 + \[Ellipsis]) /; (z -> Subscript[z, 0]) && Subscript[z, 0] == -ArcCsc[Sqrt[m]] + Pi u && Element[u, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", SqrtBox["m"]]]], RowBox[List["EllipticPi", "[", RowBox[List[FractionBox["n", "m"], ",", FractionBox["1", "m"]]], "]"]]]], "-", RowBox[List["2", "u", " ", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["m", " ", SqrtBox["2"]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]]]]], SqrtBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["m", "2"], "+", RowBox[List["10", " ", "n"]], "-", RowBox[List["m", " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["9", " ", "n"]]]], ")"]]]]]], RowBox[List["12", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]]]]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "+", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["9", " ", "m"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", "m", " ", RowBox[List["(", RowBox[List["44", "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "68"]], "+", RowBox[List["15", " ", "m"]]]], ")"]]]]]], ")"]], " ", "n"]], "+", RowBox[List[RowBox[List["(", RowBox[List["292", "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "628"]], "+", RowBox[List["345", " ", "m"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["n", "2"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["480", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], "2"]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], "+", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["(", RowBox[List[RowBox[List["15", " ", SuperscriptBox["m", "6"]]], "+", RowBox[List["920", " ", SuperscriptBox["n", "3"]]], "-", RowBox[List[SuperscriptBox["m", "5"], " ", RowBox[List["(", RowBox[List["26", "+", RowBox[List["21", " ", "n"]]]], ")"]]]], "-", RowBox[List["4", " ", "m", " ", SuperscriptBox["n", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "502"]], "+", RowBox[List["941", " ", "n"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "12"]], "+", RowBox[List["214", " ", "n"]], "-", RowBox[List["1155", " ", SuperscriptBox["n", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["m", "2"], " ", "n", " ", RowBox[List["(", RowBox[List["68", "-", RowBox[List["2578", " ", "n"]], "+", RowBox[List["2385", " ", SuperscriptBox["n", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m", "3"], " ", RowBox[List["(", RowBox[List["8", "-", RowBox[List["284", " ", "n"]], "+", RowBox[List["4258", " ", SuperscriptBox["n", "2"]]], "-", RowBox[List["1911", " ", SuperscriptBox["n", "3"]]]]], ")"]]]]]], ")"]], ")"]], "/", RowBox[List["(", RowBox[List["2688", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], "3"]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "3"]]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "->", SubscriptBox["z", "0"]]], ")"]], "\[And]", RowBox[List[SubscriptBox["z", "0"], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", "u"]]]]]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mi> m </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> n </mi> <mi> m </mi> </mfrac> <mo> &#10072; </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> <mo> &#8290; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 68 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 44 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 345 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 628 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 292 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 480 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 21 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 26 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 1155 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 214 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 12 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 1911 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4258 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 284 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2385 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2578 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 68 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 941 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 502 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 920 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2688 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#63449; </mo> <mrow> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> u </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticPi </ci> <apply> <times /> <ci> n </ci> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> m </ci> </apply> <cn type='integer'> -4 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 15 </cn> <ci> m </ci> </apply> <cn type='integer'> -68 </cn> </apply> </apply> <cn type='integer'> 44 </cn> </apply> <ci> n </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 345 </cn> <ci> m </ci> </apply> <cn type='integer'> -628 </cn> </apply> </apply> <cn type='integer'> 292 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 480 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 21 </cn> <ci> n </ci> </apply> <cn type='integer'> 26 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1155 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 214 </cn> <ci> n </ci> </apply> <cn type='integer'> -12 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1911 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4258 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 284 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2385 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2578 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 68 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 941 </cn> <ci> n </ci> </apply> <cn type='integer'> -502 </cn> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 920 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2688 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <arccsc /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <pi /> <ci> u </ci> </apply> </apply> </apply> <apply> <in /> <ci> u </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["EllipticPi", "[", RowBox[List[FractionBox["n", "m"], ",", FractionBox["1", "m"]]], "]"]], SqrtBox["m"]]]], "-", RowBox[List["2", " ", "u", " ", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", " ", SqrtBox["2"]]], ")"]], " ", SqrtBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["m", "2"], "+", RowBox[List["10", " ", "n"]], "-", RowBox[List["m", " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["9", " ", "n"]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], RowBox[List["12", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["9", " ", "m"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", "m", " ", RowBox[List["(", RowBox[List["44", "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "68"]], "+", RowBox[List["15", " ", "m"]]]], ")"]]]]]], ")"]], " ", "n"]], "+", RowBox[List[RowBox[List["(", RowBox[List["292", "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "628"]], "+", RowBox[List["345", " ", "m"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["n", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], RowBox[List["480", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["15", " ", SuperscriptBox["m", "6"]]], "+", RowBox[List["920", " ", SuperscriptBox["n", "3"]]], "-", RowBox[List[SuperscriptBox["m", "5"], " ", RowBox[List["(", RowBox[List["26", "+", RowBox[List["21", " ", "n"]]]], ")"]]]], "-", RowBox[List["4", " ", "m", " ", SuperscriptBox["n", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "502"]], "+", RowBox[List["941", " ", "n"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "12"]], "+", RowBox[List["214", " ", "n"]], "-", RowBox[List["1155", " ", SuperscriptBox["n", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["m", "2"], " ", "n", " ", RowBox[List["(", RowBox[List["68", "-", RowBox[List["2578", " ", "n"]], "+", RowBox[List["2385", " ", SuperscriptBox["n", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m", "3"], " ", RowBox[List["(", RowBox[List["8", "-", RowBox[List["284", " ", "n"]], "+", RowBox[List["4258", " ", SuperscriptBox["n", "2"]]], "-", RowBox[List["1911", " ", SuperscriptBox["n", "3"]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "3"]]], RowBox[List["2688", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], "3"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]], "&&", RowBox[List[SubscriptBox["zz", "0"], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", "u"]]]]]], "&&", RowBox[List["u", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02