Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Series representations > Generalized power series > Expansions at m==0





http://functions.wolfram.com/08.06.06.0084.01









  


  










Input Form





EllipticPi[n, z, m] \[Proportional] Round[Re[z]/Pi] (Pi/Sqrt[1 - n] - ((Pi (-1 + Sqrt[1 - n]))/ (2 Sqrt[1 - n] n)) m - ((3 Pi)/(16 n^2)) (2 - 2/Sqrt[1 - n] + n) m^2 + \[Ellipsis]) + ArcTanh[Sqrt[-1 + n] Tan[z]]/Sqrt[-1 + n] + (1/(2 n)) (-z + ArcTanh[Sqrt[-1 + n] Tan[z]]/Sqrt[-1 + n]) m + ((3 (4 ArcTanh[Sqrt[-1 + n] Tan[z]] + Sqrt[-1 + n] (-2 (2 + n) z + n Sin[2 z])))/(32 Sqrt[-1 + n] n^2)) m^2 + \[Ellipsis] /; (m -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], RowBox[List["(", RowBox[List[FractionBox["\[Pi]", SqrtBox[RowBox[List["1", "-", "n"]]]], "-", RowBox[List[FractionBox[RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "n"]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "n"]]], " ", "n"]]], "m"]], "-", RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]"]], RowBox[List["16", " ", SuperscriptBox["n", "2"]]]], RowBox[List["(", RowBox[List["2", "-", FractionBox["2", SqrtBox[RowBox[List["1", "-", "n"]]]], "+", "n"]], ")"]], SuperscriptBox["m", "2"]]], " ", "+", "\[Ellipsis]"]], ")"]]]], "+", FractionBox[RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["Tan", "[", "z", "]"]]]], "]"]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2", " ", "n"]]], RowBox[List["(", RowBox[List[RowBox[List["-", "z"]], "+", FractionBox[RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["Tan", "[", "z", "]"]]]], "]"]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]]]], ")"]], "m"]], "+", RowBox[List[FractionBox[RowBox[List["3", RowBox[List["(", RowBox[List[RowBox[List["4", " ", RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["Tan", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], " ", "z"]], "+", RowBox[List["n", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["32", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", SuperscriptBox["n", "2"]]]], SuperscriptBox["m", "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mtext> </mtext> <mrow> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8969; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> </mfrac> <mo> - </mo> <mrow> <mfrac> <mi> &#960; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 2 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mi> m </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mtext> </mtext> <mrow> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8969; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> </mfrac> <mo> - </mo> <mrow> <mfrac> <mi> &#960; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 2 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mi> m </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox["\[Pi]", SqrtBox[RowBox[List["1", "-", "n"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "n"]]]]], ")"]]]], ")"]], " ", "m"]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "n"]]], " ", "n"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", " ", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", FractionBox["2", SqrtBox[RowBox[List["1", "-", "n"]]]], "+", "n"]], ")"]], " ", SuperscriptBox["m", "2"]]], RowBox[List["16", " ", SuperscriptBox["n", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", FractionBox[RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["Tan", "[", "z", "]"]]]], "]"]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "z"]], "+", FractionBox[RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["Tan", "[", "z", "]"]]]], "]"]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]]]], ")"]], " ", "m"]], RowBox[List["2", " ", "n"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["Tan", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], " ", "z"]], "+", RowBox[List["n", " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]], " ", SuperscriptBox["m", "2"]]], RowBox[List["32", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", SuperscriptBox["n", "2"]]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02