|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.06.06.0094.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticPi[n, z, m] \[Proportional]
(-1)^Round[Re[z]/Pi] (Sqrt[(-m) Sin[z]^2]/(2 m Sin[z]))
(-Log[-4 m Sin[z]^2] + (2 Log[Cos[z/2]^2] -
n Sin[z]^2 Sum[((Pochhammer[1/2, j] Sin[z]^(2 j))/((1 + j) j!))
Hypergeometric2F1[1, -j, 1/2 - j, n], {j, 0, Infinity}]) +
(1/(4 m)) (2 (1 + n + Cot[z] Csc[z] + Log[Cos[z/2]^2]) -
(1 + 2 n) Log[-4 m Sin[z]^2] - n Sin[z]^2
Sum[((Pochhammer[3/2, j] Sin[z]^(2 j))/((1 + j) (1 + j)!))
Hypergeometric2F1[1, -1 - j, -(1/2) - j, n], {j, 0, Infinity}]) +
(1/(64 m^2)) (21 + 2 n (7 + 12 n) + 24 n Csc[z]^2 +
6 Cot[z] Csc[z] (3 + 2 Csc[z]^2) + 18 Log[Cos[z/2]^2] -
3 (3 + 4 n + 8 n^2) Log[-4 m Sin[z]^2] - 18 n Sin[z]^2
Sum[(1/((1 + j) (2 + j)!)) (Hypergeometric2F1[1, -2 - j, -(3/2) - j,
n] Pochhammer[5/2, j] Sin[z]^(2 j)), {j, 0, Infinity}]) +
\[Ellipsis]) + 2 Round[Re[z]/Pi]
((Log[-m]/(2 Sqrt[-m])) (1 + (1 + 2 n)/(4 m) + (3 (3 + 4 n + 8 n^2))/
(64 m^2) + \[Ellipsis]) + ((Sqrt[n] ArcSin[Sqrt[n]])/
(Sqrt[1 - n] Sqrt[-m])) (1 + n/(2 m) + (3 n^2)/(8 m^2) +
\[Ellipsis]) + (1/(2 Sqrt[-m])) (4 Log[2] +
(1/(2 m)) (-1 + 2 Log[2] + n (-1 + 4 Log[2])) -
(21 + 26 n + 28 n^2 - 12 (3 + 4 n + 8 n^2) Log[2])/(64 m^2) +
\[Ellipsis])) /; (Abs[m] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]], RowBox[List["2", " ", "m", " ", RowBox[List["Sin", "[", "z", "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "4"]], " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], "+", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "2"], "]"]]]], "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["2", " ", "j"]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "j"]], ")"]], " ", RowBox[List["j", "!"]]]]], RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List["-", "j"]], ",", RowBox[List[FractionBox["1", "2"], "-", "j"]], ",", "n"]], "]"]]]]]]]]]], ")"]], "+", RowBox[List[FractionBox["1", RowBox[List["4", "m"]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n", "+", RowBox[List[RowBox[List["Cot", "[", "z", "]"]], " ", RowBox[List["Csc", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "2"], "]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "4"]], " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["2", " ", "j"]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "j"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "j"]], ")"]], "!"]]]]], RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List[RowBox[List["-", "1"]], "-", "j"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "j"]], ",", "n"]], "]"]]]]]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["64", " ", SuperscriptBox["m", "2"]]]], RowBox[List["(", RowBox[List["21", "+", RowBox[List["2", " ", "n", " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["12", " ", "n"]]]], ")"]]]], "+", RowBox[List["24", " ", "n", " ", SuperscriptBox[RowBox[List["Csc", "[", "z", "]"]], "2"]]], "+", RowBox[List["6", " ", RowBox[List["Cot", "[", "z", "]"]], " ", RowBox[List["Csc", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Csc", "[", "z", "]"]], "2"]]]]], ")"]]]], "+", RowBox[List["18", " ", RowBox[List["Log", "[", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "2"], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "n"]], "+", RowBox[List["8", " ", SuperscriptBox["n", "2"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "4"]], " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], "-", RowBox[List["18", "n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "j"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", "+", "j"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List[RowBox[List["-", "2"]], "-", "j"]], ",", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "-", "j"]], ",", "n"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["5", "2"], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["2", " ", "j"]]]]], ")"]]]]]]]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["Log", "[", RowBox[List["-", "m"]], "]"]], RowBox[List["2", SqrtBox[RowBox[List["-", "m"]]], " "]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], RowBox[List["4", " ", "m"]]], "+", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "n"]], "+", RowBox[List["8", " ", SuperscriptBox["n", "2"]]]]], ")"]]]], RowBox[List["64", " ", SuperscriptBox["m", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SqrtBox["n"], RowBox[List["ArcSin", "[", SqrtBox["n"], "]"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", "n"]]], SqrtBox[RowBox[List["-", "m"]]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox["n", RowBox[List["2", " ", "m"]]], "+", FractionBox[RowBox[List["3", " ", SuperscriptBox["n", "2"]]], RowBox[List["8", " ", SuperscriptBox["m", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2", SqrtBox[RowBox[List["-", "m"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["4", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2", " ", "m"]]], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", RowBox[List["Log", "[", "2", "]"]]]]]], ")"]]]]]], ")"]]]], "-", FractionBox[RowBox[List["21", "+", RowBox[List["26", " ", "n"]], "+", RowBox[List["28", " ", SuperscriptBox["n", "2"]]], "-", RowBox[List["12", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "n"]], "+", RowBox[List["8", " ", SuperscriptBox["n", "2"]]]]], ")"]], " ", RowBox[List["Log", "[", "2", "]"]]]]]], RowBox[List["64", " ", SuperscriptBox["m", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> n </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 28 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> </msup> <mo> ⁢ </mo> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> j </mi> </mrow> <mo> ; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "j"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["1", "2"], "-", "j"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["n", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", "j"]], "-", "1"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["-", "j"]], "-", FractionBox["1", "2"]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["n", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 21 </mn> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 18 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 18 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["5", "2"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", "j"]], "-", "2"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["-", "j"]], "-", FractionBox["3", "2"]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["n", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> m </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> n </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> n </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 28 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> </msup> <mo> ⁢ </mo> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> j </mi> </mrow> <mo> ; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "j"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["1", "2"], "-", "j"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["n", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", "j"]], "-", "1"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["-", "j"]], "-", FractionBox["1", "2"]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["n", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 21 </mn> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 18 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 18 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["5", "2"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", "j"]], "-", "2"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["-", "j"]], "-", FractionBox["3", "2"]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["n", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> m </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "4"]], " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], "+", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "2"], "]"]]]], "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["2", " ", "j"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List["-", "j"]], ",", RowBox[List[FractionBox["1", "2"], "-", "j"]], ",", "n"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "j"]], ")"]], " ", RowBox[List["j", "!"]]]]]]]]]]], ")"]], "+", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n", "+", RowBox[List[RowBox[List["Cot", "[", "z", "]"]], " ", RowBox[List["Csc", "[", "z", "]"]]]], "+", RowBox[List["Log", "[", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "2"], "]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "4"]], " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["2", " ", "j"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List[RowBox[List["-", "1"]], "-", "j"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "j"]], ",", "n"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "j"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "j"]], ")"]], "!"]]]]]]]]]]], RowBox[List["4", " ", "m"]]], "+", FractionBox[RowBox[List["21", "+", RowBox[List["2", " ", "n", " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["12", " ", "n"]]]], ")"]]]], "+", RowBox[List["24", " ", "n", " ", SuperscriptBox[RowBox[List["Csc", "[", "z", "]"]], "2"]]], "+", RowBox[List["6", " ", RowBox[List["Cot", "[", "z", "]"]], " ", RowBox[List["Csc", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Csc", "[", "z", "]"]], "2"]]]]], ")"]]]], "+", RowBox[List["18", " ", RowBox[List["Log", "[", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "2"], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "n"]], "+", RowBox[List["8", " ", SuperscriptBox["n", "2"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "4"]], " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], "-", RowBox[List["18", " ", "n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List[RowBox[List["-", "2"]], "-", "j"]], ",", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "-", "j"]], ",", "n"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["5", "2"], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["2", " ", "j"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "j"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", "+", "j"]], ")"]], "!"]]]]]]]]]]], RowBox[List["64", " ", SuperscriptBox["m", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["2", " ", "m", " ", RowBox[List["Sin", "[", "z", "]"]]]]], "+", RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["Log", "[", RowBox[List["-", "m"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], RowBox[List["4", " ", "m"]]], "+", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "n"]], "+", RowBox[List["8", " ", SuperscriptBox["n", "2"]]]]], ")"]]]], RowBox[List["64", " ", SuperscriptBox["m", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "m"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["n"], " ", RowBox[List["ArcSin", "[", SqrtBox["n"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox["n", RowBox[List["2", " ", "m"]]], "+", FractionBox[RowBox[List["3", " ", SuperscriptBox["n", "2"]]], RowBox[List["8", " ", SuperscriptBox["m", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", "n"]]], " ", SqrtBox[RowBox[List["-", "m"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["4", " ", RowBox[List["Log", "[", "2", "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", RowBox[List["Log", "[", "2", "]"]]]]]], ")"]]]]]], RowBox[List["2", " ", "m"]]], "-", FractionBox[RowBox[List["21", "+", RowBox[List["26", " ", "n"]], "+", RowBox[List["28", " ", SuperscriptBox["n", "2"]]], "-", RowBox[List["12", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "n"]], "+", RowBox[List["8", " ", SuperscriptBox["n", "2"]]]]], ")"]], " ", RowBox[List["Log", "[", "2", "]"]]]]]], RowBox[List["64", " ", SuperscriptBox["m", "2"]]]], "+", "\[Ellipsis]"]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "m"]]]]]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|