|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.06.06.0099.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticPi[n, z, m] == (-1)^Round[Re[z]/Pi] (Sqrt[m Sin[z]^2]/(2 m Sin[z]))
(((m Pi)/(m - n)) Sum[(Pochhammer[1/2, k]^2/(m^k k!^2))
Hypergeometric2F1[1/2, 1, 1 + k, n/(n - m)], {k, 0, Infinity}] -
((2 m Sqrt[1 - m Sin[z]^2])/(m - n)) Sum[(Pochhammer[1/2, k]/(m^k k!))
AppellF1[1/2, 1/2 - k, 1, 3/2, 1 - m Sin[z]^2, (n (1 - m Sin[z]^2))/
(n - m)], {k, 0, Infinity}]) + 2 Round[Re[z]/Pi] EllipticPi[n, m]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], FractionBox[SqrtBox[RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]], RowBox[List["2", " ", "m", " ", RowBox[List["Sin", "[", "z", "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["m", " ", "\[Pi]"]], RowBox[List["m", "-", "n"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], "2"], SuperscriptBox["m", RowBox[List["-", "k"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["k", "!"]], ")"]], "2"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "2"], ",", "1", ",", RowBox[List["1", "+", "k"]], ",", FractionBox["n", RowBox[List["n", "-", "m"]]]]], "]"]]]]]]]], "-", RowBox[List[FractionBox[RowBox[List["2", "m", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], RowBox[List["m", "-", "n"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], SuperscriptBox["m", RowBox[List["-", "k"]]]]], RowBox[List["k", "!"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "-", "k"]], ",", "1", ",", FractionBox["3", "2"], ",", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ",", FractionBox[RowBox[List["n", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ")"]]]], RowBox[List["n", "-", "m"]]]]], "]"]]]]]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mtext> </mtext> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mfrac> <msqrt> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mi> n </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["1", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["k", "+", "1"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox["n", RowBox[List["n", "-", "m"]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> k </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mtext> </mtext> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mfrac> <msqrt> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mi> n </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["1", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["k", "+", "1"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox["n", RowBox[List["n", "-", "m"]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> k </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], " ", SqrtBox[RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", " ", "\[Pi]"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], "2"], " ", SuperscriptBox["m", RowBox[List["-", "k"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "2"], ",", "1", ",", RowBox[List["1", "+", "k"]], ",", FractionBox["n", RowBox[List["n", "-", "m"]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["k", "!"]], ")"]], "2"]]]]]], RowBox[List["m", "-", "n"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "m", " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], " ", SuperscriptBox["m", RowBox[List["-", "k"]]]]], ")"]], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "-", "k"]], ",", "1", ",", FractionBox["3", "2"], ",", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ",", FractionBox[RowBox[List["n", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ")"]]]], RowBox[List["n", "-", "m"]]]]], "]"]]]], RowBox[List["k", "!"]]]]]]], RowBox[List["m", "-", "n"]]]]], ")"]]]], RowBox[List["2", " ", "m", " ", RowBox[List["Sin", "[", "z", "]"]]]]], "+", RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], " ", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|