|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.06.06.0101.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticPi[n, z, m] ==
(-1)^Round[Re[z]/Pi] (Sqrt[Sin[z]^2]/Sqrt[(-m) Sin[z]^2])
((-(1/(4 m Sin[z]^2))) Sum[(Pochhammer[3/2, k]/(m^k (k + 1)!))
HypergeometricPFQ[{1, 1, 3/2 + k}, {2 + k, 2}, 1/(m Sin[z]^2)]
(n^k/Sqrt[1 - 1/n] - (Pochhammer[3/2, k]/(2 n (k + 1)!))
Hypergeometric2F1[1, 3/2 + k, 2 + k, 1/n]), {k, 0, Infinity}] +
Sum[(Pochhammer[3/2, k]/(m^k (2 (1 + 2 k) k!))) (Log[(-m) Sin[z]^2] -
PolyGamma[1/2 + k] + PolyGamma[1 + k]) (n^k/Sqrt[1 - 1/n] -
(Pochhammer[3/2, k]/(2 n (k + 1)!)) Hypergeometric2F1[1, 3/2 + k,
2 + k, 1/n]), {k, 0, Infinity}] - ((3 Sin[z]^2)/(8 n))
Sum[((Pochhammer[5/2, i] Pochhammer[1/2, i])/(m^i (i! (2 + i)!)))
Sum[(Sin[z]^(2 k) Pochhammer[1, k]^2 Pochhammer[1, j]
Pochhammer[5/2 + i, j + k])/n^j/(j! k! Pochhammer[2, k]
Pochhammer[3 + i, j + k]), {k, 0, Infinity}, {j, 0, Infinity}],
{i, 0, Infinity}] + (Log[1 - n Sin[z]^2]/2) (1 - 1/Sqrt[1 - 1/n])
Sum[(Pochhammer[1/2, k] n^k)/(m^k k!), {k, 0, Infinity}] -
Log[1 - n Sin[z]^2]/(2 Sqrt[1 - n/m])) +
2 Round[Re[z]/Pi] EllipticPi[n, m]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], FractionBox[SqrtBox[SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]], SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["4", " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["m", RowBox[List["-", "k"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], " "]], RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", RowBox[List[FractionBox["3", "2"], "+", "k"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "k"]], ",", "2"]], "}"]], ",", FractionBox["1", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], "]"]], RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["n", "k"], SqrtBox[RowBox[List["1", "-", FractionBox["1", "n"]]]]], "-", RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], RowBox[List["2", " ", "n", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "+", "k"]], ",", RowBox[List["2", "+", "k"]], ",", FractionBox["1", "n"]]], "]"]]]]]], ")"]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["m", RowBox[List["-", "k"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], " "]], RowBox[List["2", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]]]], ")"]], RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["n", "k"], SqrtBox[RowBox[List["1", "-", FractionBox["1", "n"]]]]], "-", RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], RowBox[List["2", " ", "n", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "+", "k"]], ",", RowBox[List["2", "+", "k"]], ",", FractionBox["1", "n"]]], "]"]]]]]], ")"]]]]]], "-", RowBox[List[FractionBox[RowBox[List["3", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], RowBox[List["8", "n"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[SuperscriptBox["m", RowBox[List["-", "i"]]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["5", "2"], ",", "i"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "i"]], "]"]]]]]], RowBox[List[RowBox[List["i", "!"]], RowBox[List[RowBox[List["(", RowBox[List["2", "+", "i"]], ")"]], "!"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["n", RowBox[List["-", "j"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["2", " ", "k"]]], " ", SuperscriptBox[RowBox[List["Pochhammer", "[", RowBox[List["1", ",", "k"]], "]"]], "2"], " ", RowBox[List["Pochhammer", "[", RowBox[List["1", ",", "j"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["5", "2"], "+", "i"]], ",", RowBox[List["j", "+", "k"]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["j", "!"]], RowBox[List["k", "!"]], RowBox[List["Pochhammer", "[", RowBox[List["2", ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["3", "+", "i"]], ",", RowBox[List["j", "+", "k"]]]], "]"]]]], ")"]]]]]]]]]]]]]], " ", "+", RowBox[List[FractionBox[RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], "]"]], "2"], RowBox[List["(", RowBox[List["1", "-", FractionBox["1", SqrtBox[RowBox[List["1", "-", FractionBox["1", "n"]]]]]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[" ", RowBox[List[SuperscriptBox["m", RowBox[List["-", "k"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], SuperscriptBox["n", "k"], " "]]]], RowBox[List["k", "!"]]]]]]], " ", "-", FractionBox[RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], "]"]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox["n", "m"]]]]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], " ", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> <mtext> </mtext> </mrow> </msup> <mo> ⁢ </mo> <mfrac> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> n </mi> </mfrac> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> n </mi> <mi> k </mi> </msup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["k", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["k", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["2", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", RowBox[List["m", " ", RowBox[List[SuperscriptBox["sin", "2"], "(", "z", ")"]]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> n </mi> <mi> k </mi> </msup> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> n </mi> </mfrac> </mrow> </msqrt> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mi> n </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["k", "+", FractionBox["3", "2"]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["k", "+", "2"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox["1", "n"], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> n </mi> <mi> k </mi> </msup> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> n </mi> </mfrac> </mrow> </msqrt> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mi> n </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["k", "+", FractionBox["3", "2"]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["k", "+", "2"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox["1", "n"], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> i </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> i </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["5", "2"], ")"]], "i"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> i </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "i"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> i </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <msup> <mi> n </mi> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <semantics> <msub> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "1", ")"]], "k"], Pochhammer] </annotation> </semantics> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "1", ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["i", "+", FractionBox["5", "2"]]], ")"]], RowBox[List["j", "+", "k"]]], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "2", ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["i", "+", "3"]], ")"]], RowBox[List["j", "+", "k"]]], Pochhammer] </annotation> </semantics> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> n </mi> <mi> m </mi> </mfrac> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> Π </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> ; </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> ❘ </ms> <ms> m </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms>  </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ⌊ </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> π </ms> </apply> <ms> ⌉ </ms> </list> </apply> </apply> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <apply> <ci> SqrtBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> m </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SqrtBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> n </ms> </apply> </list> </apply> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> ∞ </ms> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> m </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> k </ms> </list> </apply> </apply> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <ci> Pochhammer </ci> </apply> <apply> <ci> SuperscriptBox </ci> <ms> n </ms> <ms> k </ms> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> ! </ms> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> RowBox </ci> <list> <ms> 4 </ms> <ms> m </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> ∞ </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> m </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> k </ms> </list> </apply> </apply> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <ci> Pochhammer </ci> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> ! </ms> </list> </apply> </apply> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms>  </ms> <ms> 3 </ms> </apply> <apply> <ci> SubscriptBox </ci> <ms> F </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> ⁡ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> 1 </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> 1 </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> </list> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> 2 </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ci> HypergeometricPFQ </ci> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <ms> n </ms> <ms> k </ms> </apply> <apply> <ci> SqrtBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> n </ms> </apply> </list> </apply> </apply> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <ci> Pochhammer </ci> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> ! </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms>  </ms> <ms> 2 </ms> </apply> <apply> <ci> SubscriptBox </ci> <ms> F </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> ⁡ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> 1 </ms> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> </list> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> n </ms> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ci> Hypergeometric2F1 </ci> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> ∞ </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> m </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> k </ms> </list> </apply> </apply> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <ci> Pochhammer </ci> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> m </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ψ </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ψ </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> k </ms> </list> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> ! </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <ms> n </ms> <ms> k </ms> </apply> <apply> <ci> SqrtBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> n </ms> </apply> </list> </apply> </apply> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <ci> Pochhammer </ci> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> n </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> ! </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms>  </ms> <ms> 2 </ms> </apply> <apply> <ci> SubscriptBox </ci> <ms> F </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> ⁡ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> 1 </ms> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> </list> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> n </ms> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ci> Hypergeometric2F1 </ci> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 3 </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 8 </ms> <ms> n </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> i </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> ∞ </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> m </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> i </ms> </list> </apply> </apply> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> 5 </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> i </ms> </apply> <ci> Pochhammer </ci> </apply> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> i </ms> </apply> <ci> Pochhammer </ci> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> i </ms> <ms> ! </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> i </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> ! </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> ∞ </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> ∞ </ms> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> n </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> j </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> k </ms> </list> </apply> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <ms> 1 </ms> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <ci> Pochhammer </ci> </apply> <ms> 2 </ms> </apply> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <ms> 1 </ms> <ms> ) </ms> </list> </apply> <ms> j </ms> </apply> <ci> Pochhammer </ci> </apply> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> i </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> 5 </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> + </ms> <ms> k </ms> </list> </apply> </apply> <ci> Pochhammer </ci> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> ! </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> ! </ms> </list> </apply> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <ms> 2 </ms> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <ci> Pochhammer </ci> </apply> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> i </ms> <ms> + </ms> <ms> 3 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> + </ms> <ms> k </ms> </list> </apply> </apply> <ci> Pochhammer </ci> </apply> </list> </apply> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sin </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> SqrtBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> n </ms> <ms> m </ms> </apply> </list> </apply> </apply> </list> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <ms> ⌊ </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> π </ms> </apply> <ms> ⌉ </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> Π </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> n </ms> <ms> ❘ </ms> <ms> m </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], " ", SqrtBox[SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["m", RowBox[List["-", "k"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", RowBox[List[FractionBox["3", "2"], "+", "k"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "k"]], ",", "2"]], "}"]], ",", FractionBox["1", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["n", "k"], SqrtBox[RowBox[List["1", "-", FractionBox["1", "n"]]]]], "-", FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "+", "k"]], ",", RowBox[List["2", "+", "k"]], ",", FractionBox["1", "n"]]], "]"]]]], RowBox[List["2", " ", "n", " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]], RowBox[List["4", " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["m", RowBox[List["-", "k"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["n", "k"], SqrtBox[RowBox[List["1", "-", FractionBox["1", "n"]]]]], "-", FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "+", "k"]], ",", RowBox[List["2", "+", "k"]], ",", FractionBox["1", "n"]]], "]"]]]], RowBox[List["2", " ", "n", " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["m", RowBox[List["-", "i"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["5", "2"], ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "i"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox["n", RowBox[List["-", "j"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["2", " ", "k"]]], " ", SuperscriptBox[RowBox[List["Pochhammer", "[", RowBox[List["1", ",", "k"]], "]"]], "2"], " ", RowBox[List["Pochhammer", "[", RowBox[List["1", ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["5", "2"], "+", "i"]], ",", RowBox[List["j", "+", "k"]]]], "]"]]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List["2", ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["3", "+", "i"]], ",", RowBox[List["j", "+", "k"]]]], "]"]]]]]]]]]]], RowBox[List[RowBox[List["i", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", "+", "i"]], ")"]], "!"]]]]]]]]], RowBox[List["8", " ", "n"]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox["1", SqrtBox[RowBox[List["1", "-", FractionBox["1", "n"]]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox["m", RowBox[List["-", "k"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], " ", SuperscriptBox["n", "k"]]], RowBox[List["k", "!"]]]]]]], "-", FractionBox[RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], "]"]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", FractionBox["n", "m"]]]]]]]]], ")"]]]], SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], "+", RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], " ", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|