Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Series representations > Generalized power series > Expansions at m==infinity





http://functions.wolfram.com/08.06.06.0102.01









  


  










Input Form





EllipticPi[n, z, m] == EllipticF[z, m] - (-1)^Round[Re[z]/Pi] ((n Sqrt[(-m) Sin[z]^2])/(m Sin[z])) ((1/(Sqrt[-1 + n] Sqrt[n])) (ArcTanh[(Cos[z] Sqrt[n])/Sqrt[-1 + n]] - ArcTanh[Sqrt[n]/Sqrt[-1 + n]]) + ((1 - Sqrt[(m - n)/m])/(Sqrt[(m - n)/m] (-1 + n))) (-ArcTanh[Sqrt[n]/Sqrt[-1 + n]] + ArcTanh[(Sqrt[n] Cos[z])/Sqrt[-1 + n]] Cos[z]) + (1/(2 n m)) Sum[(Pochhammer[3/2, k]/(m^k k!)) (HypergeometricPFQ[{{k + 2}, {1/2, 1}, {1}}, {{2}, {3/2}, {}}, 1, (n - 1)/n] - Cos[z] HypergeometricPFQ[{{k + 2}, {1/2, 1}, {1}}, {{2}, {3/2}, {}}, Cos[z]^2, (n - 1)/n]), {k, 0, Infinity}]) + 2 Round[Re[z]/Pi] (EllipticPi[n, m] - EllipticK[m])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], FractionBox[RowBox[List["n", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], RowBox[List["m", " ", RowBox[List["Sin", "[", "z", "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", SqrtBox["n"]]]], RowBox[List["(", RowBox[List[RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[RowBox[List["Cos", "[", "z", "]"]], SqrtBox["n"]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " "]]], "]"]], "-", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox["n"], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " "]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["(", RowBox[List["1", "-", SqrtBox[FractionBox[RowBox[List["m", "-", "n"]], "m"]]]], ")"]], RowBox[List[SqrtBox[FractionBox[RowBox[List["m", "-", "n"]], "m"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]]]]], RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox["n"], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "]"]]]], "+", " ", RowBox[List[RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["n"], RowBox[List["Cos", "[", "z", "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "]"]], RowBox[List["Cos", "[", "z", "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2", "n", " ", "m"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], " ", SuperscriptBox["m", RowBox[List["-", "k"]]]]], RowBox[List["k", "!"]]], RowBox[List["(", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["k", "+", "2"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", "1", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "2", "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "1", ",", FractionBox[RowBox[List["n", "-", "1"]], "n"]]], "]"]], "-", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["k", "+", "2"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", "1", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "2", "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SuperscriptBox[RowBox[List["Cos", "[", "z", "]"]], "2"], ",", FractionBox[RowBox[List["n", "-", "1"]], "n"]]], "]"]]]]]], ")"]]]]]]]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]], "-", RowBox[List["EllipticK", "[", "m", "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8969; </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8969; </mo> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <mi> n </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mi> n </mi> </msqrt> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mi> m </mi> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msqrt> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mi> m </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mi> n </mi> </msqrt> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8969; </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8969; </mo> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <mi> n </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mi> n </mi> </msqrt> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> n </mi> </msqrt> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mi> m </mi> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msqrt> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mi> m </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> n </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mi> n </mi> </msqrt> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]]], " ", RowBox[List["(", RowBox[List["n", " ", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[RowBox[List["Cos", "[", "z", "]"]], " ", SqrtBox["n"]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "]"]], "-", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox["n"], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "]"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", SqrtBox["n"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox[FractionBox[RowBox[List["m", "-", "n"]], "m"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox["n"], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "]"]]]], "+", RowBox[List[RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["n"], " ", RowBox[List["Cos", "[", "z", "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "]"]], " ", RowBox[List["Cos", "[", "z", "]"]]]]]], ")"]]]], RowBox[List[SqrtBox[FractionBox[RowBox[List["m", "-", "n"]], "m"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]]]]], "+", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], " ", SuperscriptBox["m", RowBox[List["-", "k"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["k", "+", "2"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", "1", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "2", "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "1", ",", FractionBox[RowBox[List["n", "-", "1"]], "n"]]], "]"]], "-", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["k", "+", "2"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", "1", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "2", "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SuperscriptBox[RowBox[List["Cos", "[", "z", "]"]], "2"], ",", FractionBox[RowBox[List["n", "-", "1"]], "n"]]], "]"]]]]]], ")"]]]], RowBox[List["k", "!"]]]]], RowBox[List["2", " ", "n", " ", "m"]]]]], ")"]]]], RowBox[List["m", " ", RowBox[List["Sin", "[", "z", "]"]]]]], "+", RowBox[List["2", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "m"]], "]"]], "-", RowBox[List["EllipticK", "[", "m", "]"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02