Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Differentiation > Symbolic differentiation > With respect to m





http://functions.wolfram.com/08.06.20.0018.01









  


  










Input Form





D[EllipticPi[n, z, m], {m, p}] == (((ArcTanh[Sqrt[-1 + n] Tan[z]] Sqrt[Cos[z]^2] Sec[z])/Sqrt[-1 + n]) Hypergeometric2F1Regularized[1/2, 1, 1 - p, m/n] - ((m Sin[z])/(4 n)) Sum[(((k + 1)! Pochhammer[3/2, k] m^k)/ (2^k (k - p + 1)!)) Sum[(1/(k - j)!) ((n - 2)/n)^j Sum[((-1)^(i + j - 1)/(i! (j - i + 1)!)) (Sum[((Binomial[-1 + i, 2 q] Pochhammer[1/2, q])/q!) (n/(2 - n))^(2 q) ((2 ArcSin[Sin[z]])/Sin[z] + (Sqrt[Cos[z]^2]/ Cos[2 z]) Sum[((p - 1)! Cos[2 z]^(2 p))/Pochhammer[1/2, p], {p, 1, q}]), {q, 0, Floor[(i - 1)/2]}] + ((2 n Sqrt[Cos[z]^2])/(2 - n)) Sum[q! Binomial[-1 + i, 1 + 2 q] Cos[2 z]^(2 q) (n/(2 - n))^(2 q) Sum[Tan[2 z]^(2 p)/ ((q - p)! Pochhammer[3/2, p]), {p, 0, q}], {q, 0, -1 + Floor[i/2]}]), {i, 0, 1 + j}], {j, 0, k}], {k, 0, Infinity}])/ m^p /; Element[p, Integers] && p >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["m", ",", "p"]], "}"]]], RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["m", RowBox[List["-", "p"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["Tan", "[", "z", "]"]]]], "]"]], " ", SqrtBox[SuperscriptBox[RowBox[List["Cos", "[", "z", "]"]], "2"]], " ", RowBox[List["Sec", "[", "z", "]"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " "]]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[FractionBox["1", "2"], ",", "1", ",", RowBox[List["1", "-", "p"]], ",", FractionBox["m", "n"]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["m", " ", RowBox[List["Sin", "[", "z", "]"]]]], RowBox[List["4", " ", "n"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], SuperscriptBox["2", RowBox[List["-", "k"]]], SuperscriptBox["m", "k"]]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "p", "+", "1"]], ")"]], "!"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["n", "-", "2"]], "n"], ")"]], "j"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["1", "+", "j"]]], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["i", "+", "j", "-", "1"]]], RowBox[List[RowBox[List["i", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "-", "i", "+", "1"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["i", "-", "1"]], "2"], "]"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "i"]], ",", RowBox[List["2", " ", "q"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "q"]], "]"]]]], RowBox[List["q", "!"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["n", RowBox[List["2", "-", "n"]]], ")"]], RowBox[List["2", " ", "q"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", RowBox[List["ArcSin", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]]]], RowBox[List["Sin", "[", "z", "]"]]], " ", "+", RowBox[List[FractionBox[SqrtBox[SuperscriptBox[RowBox[List["Cos", "[", "z", "]"]], "2"]], RowBox[List["Cos", "[", RowBox[List["2", "z"]], "]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], "q"], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["p", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]], RowBox[List["2", " ", "p"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "p"]], "]"]]]]]]]]], ")"]]]]]], "+", RowBox[List[FractionBox[RowBox[List["2", "n", SqrtBox[SuperscriptBox[RowBox[List["Cos", "[", "z", "]"]], "2"]]]], RowBox[List["2", "-", "n"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Floor", "[", FractionBox["i", "2"], "]"]]]]], RowBox[List[RowBox[List["q", "!"]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "i"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "q"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]], RowBox[List["2", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["n", RowBox[List["2", "-", "n"]]], ")"]], RowBox[List["2", " ", "q"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "q"], FractionBox[SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["2", " ", "z"]], "]"]], RowBox[List["2", "p"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["q", "-", "p"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "p"]], "]"]]]]]]]]]]]]]]], ")"]]]]]]]]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> p </mi> </msup> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> m </mi> <mi> p </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> p </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> p </mi> </mrow> <mo> ; </mo> <mfrac> <mi> m </mi> <mi> n </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;p&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;m&quot;, &quot;n&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> m </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mi> n </mi> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> i </mi> <mo> + </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> i </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> i </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> i </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <mfrac> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> i </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;i&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;q&quot;]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> q </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;q&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> q </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> n </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <msqrt> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msqrt> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> p </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;p&quot;], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> i </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mi> q </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> i </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;i&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;q&quot;]], &quot;+&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> n </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> n </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> q </mi> </munderover> <mfrac> <mrow> <msup> <mi> tan </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> p </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;p&quot;], Pochhammer] </annotation> </semantics> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> p </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> m </ci> <degree> <ci> p </ci> </degree> </bvar> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <tan /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <cos /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sec /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> m </ci> <apply> <sin /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 3 <sep /> 2 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> m </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> i </ci> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> i </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> i </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> i </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> q </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arcsin /> <apply> <sin /> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <cos /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> <apply> <power /> <apply> <power /> <apply> <cos /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <floor /> <apply> <times /> <ci> i </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <factorial /> <ci> q </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> i </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <times /> <apply> <power /> <apply> <tan /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 3 <sep /> 2 </cn> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> p </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["m_", ",", "p_"]], "}"]]]]], RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["m", RowBox[List["-", "p"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["Tan", "[", "z", "]"]]]], "]"]], " ", SqrtBox[SuperscriptBox[RowBox[List["Cos", "[", "z", "]"]], "2"]], " ", RowBox[List["Sec", "[", "z", "]"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[FractionBox["1", "2"], ",", "1", ",", RowBox[List["1", "-", "p"]], ",", FractionBox["m", "n"]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", " ", RowBox[List["Sin", "[", "z", "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], " ", SuperscriptBox["2", RowBox[List["-", "k"]]], " ", SuperscriptBox["m", "k"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["n", "-", "2"]], "n"], ")"]], "j"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["1", "+", "j"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["i", "+", "j", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["i", "-", "1"]], "2"], "]"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "i"]], ",", RowBox[List["2", " ", "q"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "q"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["n", RowBox[List["2", "-", "n"]]], ")"]], RowBox[List["2", " ", "q"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["ArcSin", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]]]], RowBox[List["Sin", "[", "z", "]"]]], "+", FractionBox[RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["Cos", "[", "z", "]"]], "2"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], "q"], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["p", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]], RowBox[List["2", " ", "p"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "p"]], "]"]]]]]]], RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]], ")"]]]], RowBox[List["q", "!"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n", " ", SqrtBox[SuperscriptBox[RowBox[List["Cos", "[", "z", "]"]], "2"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Floor", "[", FractionBox["i", "2"], "]"]]]]], RowBox[List[RowBox[List["q", "!"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "i"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "q"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]], RowBox[List["2", " ", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["n", RowBox[List["2", "-", "n"]]], ")"]], RowBox[List["2", " ", "q"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "q"], FractionBox[SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["2", " ", "z"]], "]"]], RowBox[List["2", " ", "p"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["q", "-", "p"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "p"]], "]"]]]]]]]]]]]]], RowBox[List["2", "-", "n"]]]]], ")"]]]], RowBox[List[RowBox[List["i", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "-", "i", "+", "1"]], ")"]], "!"]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "p", "+", "1"]], ")"]], "!"]]]]]]], RowBox[List["4", " ", "n"]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02