|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.18.20.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[Beta[a, b], {b, \[Alpha]}] == FDPowerConstant[b, -1, \[Alpha]]
b^(-\[Alpha] - 1) + Sum[(((-1)^j Pochhammer[1 - a, k + 1] j!)/
((k + 1)^(j + 2) k! Gamma[j - \[Alpha] + 1])) b^(j - \[Alpha]),
{j, 0, Infinity}, {k, 0, Infinity}] /; Abs[b] < 1 && Re[a] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["b", ",", "\[Alpha]"]], "}"]]], RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["b", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], SuperscriptBox["b", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "a"]], ",", RowBox[List["k", "+", "1"]]]], "]"]], RowBox[List["j", "!"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], RowBox[List["j", "+", "2"]]], RowBox[List["k", "!"]], RowBox[List["Gamma", "[", RowBox[List["j", "-", "\[Alpha]", "+", "1"]], "]"]]]]], SuperscriptBox["b", RowBox[List["j", "-", "\[Alpha]"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "b", "]"]], "<", "1"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <mrow> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> b </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mtext> </mtext> <mrow> <mrow> <mrow> <msubsup> <mi> ℱ𝒞 </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> b </mi> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["1", "-", "a"]], ")"]], RowBox[List["k", "+", "1"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> b </mi> <mrow> <mi> j </mi> <mo> - </mo> <mi> α </mi> </mrow> </msup> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> b </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> b </ci> <degree> <ci> α </ci> </degree> </bvar> <apply> <ci> Beta </ci> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ℱ𝒞 </ci> <ci> exp </ci> </apply> <ci> α </ci> </apply> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> j </ci> </apply> <apply> <power /> <ci> b </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <gt /> <apply> <real /> <ci> a </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["b_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["Beta", "[", RowBox[List["a_", ",", "b_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["b", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["b", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "a"]], ",", RowBox[List["k", "+", "1"]]]], "]"]], " ", RowBox[List["j", "!"]]]], ")"]], " ", SuperscriptBox["b", RowBox[List["j", "-", "\[Alpha]"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], RowBox[List["j", "+", "2"]]], " ", RowBox[List["k", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["j", "-", "\[Alpha]", "+", "1"]], "]"]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "b", "]"]], "<", "1"]], "&&", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|