|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.03.06.0019.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Binomial[2 k, k] \[Proportional] (4^k/Sqrt[Pi k])
(1 - 1/(8 k) + 1/(128 k^2) + 5/(1024 k^3) - 21/(32768 k^4) + O[1/k^5]) /;
(Abs[k] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", "k"]], ",", "k"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[SuperscriptBox["4", "k"], RowBox[List[" ", SqrtBox[RowBox[List["\[Pi]", " ", "k"]]]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox["1", RowBox[List["8", "k"]]], "+", FractionBox["1", RowBox[List["128", SuperscriptBox["k", "2"]]]], "+", FractionBox["5", RowBox[List["1024", SuperscriptBox["k", "3"]]]], "-", FractionBox["21", RowBox[List["32768", SuperscriptBox["k", "4"]]]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["k", "5"]], "]"]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "k", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", "k"]], Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox["k", Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ∝ </mo> <mrow> <mfrac> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <msqrt> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 128 </mn> <mo> ⁢ </mo> <msup> <mi> k </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 5 </mn> <mrow> <mn> 1024 </mn> <mo> ⁢ </mo> <msup> <mi> k </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 21 </mn> <mrow> <mn> 32768 </mn> <mo> ⁢ </mo> <msup> <mi> k </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> k </mi> <mn> 5 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> k </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <pi /> <ci> k </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1024 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 32768 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> k </ci> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> k </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "k_"]], ",", "k_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["4", "k"], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox["1", RowBox[List["8", " ", "k"]]], "+", FractionBox["1", RowBox[List["128", " ", SuperscriptBox["k", "2"]]]], "+", FractionBox["5", RowBox[List["1024", " ", SuperscriptBox["k", "3"]]]], "-", FractionBox["21", RowBox[List["32768", " ", SuperscriptBox["k", "4"]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["k", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "5"]], "]"]]]], ")"]]]], SqrtBox[RowBox[List["\[Pi]", " ", "k"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "k", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|