  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/06.03.29.0004.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    2 Subscript[d, n][\[Lambda] + \[Mu] + \[Nu] + \[Gamma]] 
   Sum[(Subscript[d, n - k][\[Lambda]]/Subscript[d, k][
       \[Mu] + \[Nu] + \[Gamma]]) 
     Abs[Sum[Subscript[u, j] Subscript[v, k - j], {j, 0, k}] 
       Sum[Subscript[x, j] Subscript[y, k - j], {j, 0, k}]], {k, 0, n}] <= 
  Sum[(Subscript[d, n - k][\[Lambda] + \[Nu]]/Subscript[d, k][
       \[Mu] + \[Gamma]]) Abs[Subscript[u, k]]^2, {k, 0, n}] 
   Sum[(Subscript[d, n - k][\[Lambda] + \[Mu]]/Subscript[d, k][
       \[Nu] + \[Gamma]]) Abs[Subscript[y, k]]^2, {k, 0, n}] 
   Sum[(Subscript[d, n - k][\[Lambda] + \[Nu] + \[Gamma]]/
      Subscript[d, k][\[Mu]]) Abs[Subscript[x, k]]^2, {k, 0, n}] 
   Sum[(Subscript[d, n - k][\[Lambda] + \[Mu] + \[Gamma]]/
      Subscript[d, k][\[Nu]]) Abs[Subscript[\[Nu], k]]^2, {k, 0, n}] /; 
 Subscript[d, k][\[Alpha]] == Binomial[k + \[Alpha] - 1, k] && 
  Element[\[Mu], Reals] && \[Mu] > 0 && Element[\[Nu], Reals] && \[Nu] > 0 && 
  Element[\[Gamma], Reals] && \[Gamma] >= 0 && Element[\[Lambda], Reals] && 
  \[Lambda] >= 0 && Max[Abs[{Subscript[u, 1], Subscript[u, 2], \[Ellipsis], 
      Subscript[u, n]}]] > 0 && 
  Max[Abs[{Subscript[v, 1], Subscript[v, 2], \[Ellipsis], 
      Subscript[v, n]}]] > 0 && 
  Max[Abs[{Subscript[x, 1], Subscript[x, 2], \[Ellipsis], 
      Subscript[x, n]}]] > 0 && 
  Max[Abs[{Subscript[y, 1], Subscript[y, 2], \[Ellipsis], 
      Subscript[y, n]}]] > 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["2", RowBox[List[SubscriptBox["d", "n"], "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "\[Nu]", "+", "\[Gamma]"]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SubscriptBox["d", RowBox[List["n", "-", "k"]]], "[", "\[Lambda]", "]"]], RowBox[List[SubscriptBox["d", "k"], "[", RowBox[List["\[Mu]", "+", "\[Nu]", "+", "\[Gamma]"]], "]"]]], RowBox[List["Abs", "[", RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SubscriptBox["u", "j"], SubscriptBox["v", RowBox[List["k", "-", "j"]]]]]]], ")"]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SubscriptBox["x", "j"], SubscriptBox["y", RowBox[List["k", "-", "j"]]]]]]], ")"]]]], "]"]]]]]]]], "\[LessEqual]", RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SubscriptBox["d", RowBox[List["n", "-", "k"]]], "[", RowBox[List["\[Lambda]", "+", "\[Nu]"]], "]"]], RowBox[List[SubscriptBox["d", "k"], "[", RowBox[List["\[Mu]", "+", "\[Gamma]"]], "]"]]], SuperscriptBox[RowBox[List["Abs", "[", SubscriptBox["u", "k"], "]"]], "2"]]]]], ")"]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SubscriptBox["d", RowBox[List["n", "-", "k"]]], "[", RowBox[List["\[Lambda]", "+", "\[Mu]"]], "]"]], RowBox[List[SubscriptBox["d", "k"], "[", RowBox[List["\[Nu]", "+", "\[Gamma]"]], "]"]]], SuperscriptBox[RowBox[List["Abs", "[", SubscriptBox["y", "k"], "]"]], "2"]]]]], ")"]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SubscriptBox["d", RowBox[List["n", "-", "k"]]], "[", RowBox[List["\[Lambda]", "+", "\[Nu]", "+", "\[Gamma]"]], "]"]], RowBox[List[SubscriptBox["d", "k"], "[", "\[Mu]", "]"]]], SuperscriptBox[RowBox[List["Abs", "[", SubscriptBox["x", "k"], "]"]], "2"]]]]], ")"]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SubscriptBox["d", RowBox[List["n", "-", "k"]]], "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "\[Gamma]"]], "]"]], RowBox[List[SubscriptBox["d", "k"], "[", "\[Nu]", "]"]]], SuperscriptBox[RowBox[List["Abs", "[", SubscriptBox["\[Nu]", "k"], "]"]], "2"]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["d", "k"], "[", "\[Alpha]", "]"]], "\[Equal]", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "+", "\[Alpha]", "-", "1"]], ",", "k"]], "]"]]]], "\[And]", RowBox[List["\[Mu]", "\[Element]", "Reals"]], "\[And]", RowBox[List["\[Mu]", ">", "0"]], "\[And]", RowBox[List["\[Nu]", "\[Element]", "Reals"]], "\[And]", RowBox[List["\[Nu]", ">", "0"]], "\[And]", RowBox[List["\[Gamma]", "\[Element]", "Reals"]], "\[And]", RowBox[List["\[Gamma]", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["\[Lambda]", "\[Element]", "Reals"]], "\[And]", RowBox[List["\[Lambda]", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["Max", "[", RowBox[List["Abs", "[", RowBox[List["{", RowBox[List[SubscriptBox["u", "1"], ",", SubscriptBox["u", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["u", "n"]]], "}"]], "]"]], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Max", "[", RowBox[List["Abs", "[", RowBox[List["{", RowBox[List[SubscriptBox["v", "1"], ",", SubscriptBox["v", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["v", "n"]]], "}"]], "]"]], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Max", "[", RowBox[List["Abs", "[", RowBox[List["{", RowBox[List[SubscriptBox["x", "1"], ",", SubscriptBox["x", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["x", "n"]]], "}"]], "]"]], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Max", "[", RowBox[List["Abs", "[", RowBox[List["{", RowBox[List[SubscriptBox["y", "1"], ",", SubscriptBox["y", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["y", "n"]]], "}"]], "]"]], "]"]], ">", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> d </mi>  <mi> n </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> γ </mi>  <mo> + </mo>  <mi> λ </mi>  <mo> + </mo>  <mi> μ </mi>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msub>  <mi> d </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msub>  <mo> ( </mo>  <mi> λ </mi>  <mo> ) </mo>  </mrow>  <mrow>  <msub>  <mi> d </mi>  <mi> k </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> γ </mi>  <mo> + </mo>  <mi> μ </mi>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msub>  <mi> u </mi>  <mi> j </mi>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> v </mi>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msub>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> k </mi>  </munderover>  <mrow>  <msub>  <mi> x </mi>  <mi> j </mi>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> y </mi>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msub>  </mrow>  </mrow>  </mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ≤ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msub>  <mi> d </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msub>  <mo> ( </mo>  <mrow>  <mi> λ </mi>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <msub>  <mi> d </mi>  <mi> k </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> γ </mi>  <mo> + </mo>  <mi> μ </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <msub>  <mi> u </mi>  <mi> k </mi>  </msub>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msub>  <mi> d </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msub>  <mo> ( </mo>  <mrow>  <mi> λ </mi>  <mo> + </mo>  <mi> μ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <msub>  <mi> d </mi>  <mi> k </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> γ </mi>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <msub>  <mi> y </mi>  <mi> k </mi>  </msub>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msub>  <mi> d </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msub>  <mo> ( </mo>  <mrow>  <mi> γ </mi>  <mo> + </mo>  <mi> λ </mi>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <msub>  <mi> d </mi>  <mi> k </mi>  </msub>  <mo> ( </mo>  <mi> μ </mi>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <msub>  <mi> x </mi>  <mi> k </mi>  </msub>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msub>  <mi> d </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msub>  <mo> ( </mo>  <mrow>  <mi> γ </mi>  <mo> + </mo>  <mi> λ </mi>  <mo> + </mo>  <mi> μ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <msub>  <mi> d </mi>  <mi> k </mi>  </msub>  <mo> ( </mo>  <mi> ν </mi>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <msub>  <mi> ν </mi>  <mi> k </mi>  </msub>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mrow>  <msub>  <mi> d </mi>  <mi> k </mi>  </msub>  <mo> ( </mo>  <mi> α </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> α </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["k", "+", "\[Alpha]", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> μ </mi>  <mo> ∈ </mo>  <msup>  <semantics>  <mi> ℝ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation>  </semantics>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> ν </mi>  <mo> ∈ </mo>  <mrow>  <msup>  <semantics>  <mi> ℝ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation>  </semantics>  <mo> + </mo>  </msup>  <mo> ⁢ </mo>  <mn> 0 </mn>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> γ </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℝ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> γ </mi>  <mo> ≥ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> λ </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℝ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> λ </mi>  <mo> ≥ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> max </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> u </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> u </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> u </mi>  <mi> n </mi>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> max </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> v </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> v </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> v </mi>  <mi> n </mi>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> max </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> x </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> x </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> x </mi>  <mi> n </mi>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> max </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> y </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> y </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> y </mi>  <mi> n </mi>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <leq />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <ci> n </ci>  </apply>  <apply>  <plus />  <ci> γ </ci>  <ci> λ </ci>  <ci> μ </ci>  <ci> ν </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <ci> λ </ci>  </apply>  <apply>  <power />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <ci> γ </ci>  <ci> μ </ci>  <ci> ν </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <abs />  <apply>  <times />  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> u </ci>  <ci> j </ci>  </apply>  <apply>  <ci> Subscript </ci>  <ci> v </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> k </ci>  </uplimit>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> x </ci>  <ci> j </ci>  </apply>  <apply>  <ci> Subscript </ci>  <ci> y </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> λ </ci>  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <ci> γ </ci>  <ci> μ </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <abs />  <apply>  <ci> Subscript </ci>  <ci> u </ci>  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> λ </ci>  <ci> μ </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <ci> γ </ci>  <ci> ν </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <abs />  <apply>  <ci> Subscript </ci>  <ci> y </ci>  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> γ </ci>  <ci> λ </ci>  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <ci> k </ci>  </apply>  <ci> μ </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <abs />  <apply>  <ci> Subscript </ci>  <ci> x </ci>  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> γ </ci>  <ci> λ </ci>  <ci> μ </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <ci> k </ci>  </apply>  <ci> ν </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <abs />  <apply>  <ci> Subscript </ci>  <ci> ν </ci>  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <eq />  <apply>  <apply>  <ci> Subscript </ci>  <ci> d </ci>  <ci> k </ci>  </apply>  <ci> α </ci>  </apply>  <apply>  <ci> Binomial </ci>  <apply>  <plus />  <ci> k </ci>  <ci> α </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> k </ci>  </apply>  </apply>  <apply>  <in />  <ci> μ </ci>  <apply>  <ci> SuperPlus </ci>  <reals />  </apply>  </apply>  <apply>  <in />  <ci> ν </ci>  <apply>  <times />  <apply>  <ci> SuperPlus </ci>  <reals />  </apply>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <in />  <ci> γ </ci>  <reals />  </apply>  <apply>  <geq />  <ci> γ </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <in />  <ci> λ </ci>  <reals />  </apply>  <apply>  <geq />  <ci> λ </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <gt />  <apply>  <max />  <apply>  <abs />  <list>  <apply>  <ci> Subscript </ci>  <ci> u </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> u </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> … </ci>  <apply>  <ci> Subscript </ci>  <ci> u </ci>  <ci> n </ci>  </apply>  </list>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <gt />  <apply>  <max />  <apply>  <abs />  <list>  <apply>  <ci> Subscript </ci>  <ci> v </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> v </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> … </ci>  <apply>  <ci> Subscript </ci>  <ci> v </ci>  <ci> n </ci>  </apply>  </list>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <gt />  <apply>  <max />  <apply>  <abs />  <list>  <apply>  <ci> Subscript </ci>  <ci> x </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> … </ci>  <apply>  <ci> Subscript </ci>  <ci> x </ci>  <ci> n </ci>  </apply>  </list>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <gt />  <apply>  <max />  <apply>  <abs />  <list>  <apply>  <ci> Subscript </ci>  <ci> y </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> … </ci>  <apply>  <ci> Subscript </ci>  <ci> y </ci>  <ci> n </ci>  </apply>  </list>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["2", " ", RowBox[List[SubscriptBox["d", "n"], "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "\[Nu]", "+", "\[Gamma]"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List[SubscriptBox["d", RowBox[List["n", "-", "k"]]], "[", "\[Lambda]", "]"]], " ", RowBox[List["Abs", "[", RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SubscriptBox["u", "j"], " ", SubscriptBox["v", RowBox[List["k", "-", "j"]]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SubscriptBox["x", "j"], " ", SubscriptBox["y", RowBox[List["k", "-", "j"]]]]]]]]], "]"]]]], RowBox[List[SubscriptBox["d", "k"], "[", RowBox[List["\[Mu]", "+", "\[Nu]", "+", "\[Gamma]"]], "]"]]]]]]], "\[LessEqual]", RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List[SubscriptBox["d", RowBox[List["n", "-", "k"]]], "[", RowBox[List["\[Lambda]", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["Abs", "[", SubscriptBox["u", "k"], "]"]], "2"]]], RowBox[List[SubscriptBox["d", "k"], "[", RowBox[List["\[Mu]", "+", "\[Gamma]"]], "]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List[SubscriptBox["d", RowBox[List["n", "-", "k"]]], "[", RowBox[List["\[Lambda]", "+", "\[Mu]"]], "]"]], " ", SuperscriptBox[RowBox[List["Abs", "[", SubscriptBox["y", "k"], "]"]], "2"]]], RowBox[List[SubscriptBox["d", "k"], "[", RowBox[List["\[Nu]", "+", "\[Gamma]"]], "]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List[SubscriptBox["d", RowBox[List["n", "-", "k"]]], "[", RowBox[List["\[Lambda]", "+", "\[Nu]", "+", "\[Gamma]"]], "]"]], " ", SuperscriptBox[RowBox[List["Abs", "[", SubscriptBox["x", "k"], "]"]], "2"]]], RowBox[List[SubscriptBox["d", "k"], "[", "\[Mu]", "]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List[SubscriptBox["d", RowBox[List["n", "-", "k"]]], "[", RowBox[List["\[Lambda]", "+", "\[Mu]", "+", "\[Gamma]"]], "]"]], " ", SuperscriptBox[RowBox[List["Abs", "[", SubscriptBox["\[Nu]", "k"], "]"]], "2"]]], RowBox[List[SubscriptBox["d", "k"], "[", "\[Nu]", "]"]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["d", "k"], "[", "\[Alpha]", "]"]], "\[Equal]", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "+", "\[Alpha]", "-", "1"]], ",", "k"]], "]"]]]], "&&", RowBox[List["\[Mu]", "\[Element]", "Reals"]], "&&", RowBox[List["\[Mu]", ">", "0"]], "&&", RowBox[List["\[Nu]", "\[Element]", "Reals"]], "&&", RowBox[List["\[Nu]", ">", "0"]], "&&", RowBox[List["\[Gamma]", "\[Element]", "Reals"]], "&&", RowBox[List["\[Gamma]", "\[GreaterEqual]", "0"]], "&&", RowBox[List["\[Lambda]", "\[Element]", "Reals"]], "&&", RowBox[List["\[Lambda]", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["Max", "[", RowBox[List["Abs", "[", RowBox[List["{", RowBox[List[SubscriptBox["u", "1"], ",", SubscriptBox["u", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["u", "n"]]], "}"]], "]"]], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Max", "[", RowBox[List["Abs", "[", RowBox[List["{", RowBox[List[SubscriptBox["v", "1"], ",", SubscriptBox["v", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["v", "n"]]], "}"]], "]"]], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Max", "[", RowBox[List["Abs", "[", RowBox[List["{", RowBox[List[SubscriptBox["x", "1"], ",", SubscriptBox["x", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["x", "n"]]], "}"]], "]"]], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Max", "[", RowBox[List["Abs", "[", RowBox[List["{", RowBox[List[SubscriptBox["y", "1"], ",", SubscriptBox["y", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["y", "n"]]], "}"]], "]"]], "]"]], ">", "0"]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |