Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Factorial2






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Factorial2[n] > Series representations > Generalized power series > Expansions at n==-2m





http://functions.wolfram.com/06.02.06.0006.02









  


  










Input Form





n!! \[Proportional] (((-1)^(m - 1) 2^(1 - m))/((m - 1)! (n + 2 m))) (1 + (1/2) (Log[2] + PolyGamma[m]) (n + 2 m) + (1/24) (Pi^2 + 3 Log[2]^2 + Pi^2 Log[8] - 3 Pi^2 Log[Pi] + Log[64] PolyGamma[m] + 3 PolyGamma[m]^2 - 3 PolyGamma[1, m]) (n + 2 m)^2 + (1/48) (Pi^2 Log[2] + 3 Pi^2 Log[2]^2 + Log[2]^3 - Pi^2 Log[8] Log[Pi] + Log[8] PolyGamma[m]^2 + PolyGamma[m]^3 + PolyGamma[m] (3 Log[2]^2 + Pi^2 (1 + Log[8] - 3 Log[Pi]) - 3 PolyGamma[1, m]) - Log[8] PolyGamma[1, m] + PolyGamma[2, m]) (n + 2 m)^3 + (1/5760) (7 Pi^4 - 30 Pi^4 Log[2] + 30 Pi^2 Log[2]^2 + 45 Pi^4 Log[2]^2 + 90 Pi^2 Log[2]^3 + 15 Log[2]^4 + 30 Pi^4 Log[Pi] - 90 Pi^4 Log[2] Log[Pi] - 90 Pi^2 Log[2]^2 Log[Pi] + 45 Pi^4 Log[Pi]^2 + 60 Log[2] PolyGamma[m]^3 + 15 PolyGamma[m]^4 + 30 PolyGamma[m]^2 (3 Log[2]^2 + Pi^2 (1 + Log[8] - 3 Log[Pi]) - 3 PolyGamma[1, m]) - 30 (3 Log[2]^2 + Pi^2 (1 + Log[8] - 3 Log[Pi])) PolyGamma[1, m] + 45 PolyGamma[1, m]^2 + 60 Log[2] PolyGamma[2, m] + 60 PolyGamma[m] (Pi^2 Log[2] + 3 Pi^2 Log[2]^2 + Log[2]^3 - Pi^2 Log[8] Log[Pi] - Log[8] PolyGamma[1, m] + PolyGamma[2, m]) - 15 PolyGamma[3, m]) (n + 2 m)^4 + O[(n + 2 m)^5]) /; (n -> -2 m) && Element[m, Integers] && m > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["n", "!!"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "-", "1"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " "]], RowBox[List[" ", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]], RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", "m"]]]], ")"]]]]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "2", "]"]], "+", RowBox[List["PolyGamma", "[", "m", "]"]]]], ")"]], RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", "m"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "24"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "8", "]"]]]], "-", RowBox[List["3", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List[RowBox[List["Log", "[", "64", "]"]], " ", RowBox[List["PolyGamma", "[", "m", "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", "m"]]]], ")"]], "2"]]], "+", RowBox[List[FractionBox["1", "48"], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "3"], "-", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "8", "]"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List[RowBox[List["Log", "[", "8", "]"]], " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "3"], "+", RowBox[List[RowBox[List["PolyGamma", "[", "m", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Log", "[", "8", "]"]], "-", RowBox[List["3", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]]]], ")"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["Log", "[", "8", "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", "m"]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", "m"]]]], ")"]], "3"]]], "+", RowBox[List[FractionBox["1", "5760"], RowBox[List["(", RowBox[List[RowBox[List["7", " ", SuperscriptBox["\[Pi]", "4"]]], "-", RowBox[List["30", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["30", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List["45", " ", SuperscriptBox["\[Pi]", "4"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List["90", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "3"]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "4"]]], "+", RowBox[List["30", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List["90", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", "2", "]"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List["90", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["45", " ", SuperscriptBox["\[Pi]", "4"], " ", SuperscriptBox[RowBox[List["Log", "[", "\[Pi]", "]"]], "2"]]], "+", RowBox[List["60", " ", RowBox[List["Log", "[", "2", "]"]], " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "3"]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "4"]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Log", "[", "8", "]"]], "-", RowBox[List["3", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]]]], ")"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]]]], ")"]]]], "-", RowBox[List["30", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Log", "[", "8", "]"]], "-", RowBox[List["3", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]], "+", RowBox[List["45", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]], "2"]]], "+", RowBox[List["60", " ", RowBox[List["Log", "[", "2", "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", "m"]], "]"]]]], "+", RowBox[List["60", " ", RowBox[List["PolyGamma", "[", "m", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "3"], "-", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "8", "]"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List[RowBox[List["Log", "[", "8", "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", "m"]], "]"]]]], ")"]]]], "-", RowBox[List["15", " ", RowBox[List["PolyGamma", "[", RowBox[List["3", ",", "m"]], "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", "m"]]]], ")"]], "4"]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", "m"]]]], ")"]], "5"], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", RowBox[List[RowBox[List["-", "2"]], "m"]]]], ")"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> n </mi> <mo> !! </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 24 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 8 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 64 </mn> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 48 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> + </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 8 </mn> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 8 </mn> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 8 </mn> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 8 </mn> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 5760 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 90 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 45 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 90 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 90 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 45 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 45 </mn> <mo> &#8290; </mo> <msup> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 8 </mn> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 8 </mn> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 8 </mn> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 8 </mn> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Factorial2 </ci> <ci> n </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 24 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <pi /> </apply> </apply> </apply> <apply> <times /> <apply> <ln /> <cn type='integer'> 64 </cn> </apply> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 48 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <ln /> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <cn type='integer'> 8 </cn> </apply> <apply> <ln /> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <cn type='integer'> 8 </cn> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 8 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ln /> <pi /> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 5760 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 90 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 90 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <pi /> </apply> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 90 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <ln /> <pi /> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <ln /> <pi /> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <ln /> <pi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 8 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ln /> <pi /> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 8 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ln /> <pi /> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <ci> PolyGamma </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <cn type='integer'> 8 </cn> </apply> <apply> <ln /> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <cn type='integer'> 8 </cn> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 3 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> m </ci> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["n_", "!!"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "-", "1"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "m"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "2", "]"]], "+", RowBox[List["PolyGamma", "[", "m", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", " ", "m"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "24"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "8", "]"]]]], "-", RowBox[List["3", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List[RowBox[List["Log", "[", "64", "]"]], " ", RowBox[List["PolyGamma", "[", "m", "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", " ", "m"]]]], ")"]], "2"]]], "+", RowBox[List[FractionBox["1", "48"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "3"], "-", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "8", "]"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List[RowBox[List["Log", "[", "8", "]"]], " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "3"], "+", RowBox[List[RowBox[List["PolyGamma", "[", "m", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Log", "[", "8", "]"]], "-", RowBox[List["3", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]]]], ")"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["Log", "[", "8", "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", "m"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", " ", "m"]]]], ")"]], "3"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["7", " ", SuperscriptBox["\[Pi]", "4"]]], "-", RowBox[List["30", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["30", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List["45", " ", SuperscriptBox["\[Pi]", "4"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List["90", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "3"]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "4"]]], "+", RowBox[List["30", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List["90", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["Log", "[", "2", "]"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List["90", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["45", " ", SuperscriptBox["\[Pi]", "4"], " ", SuperscriptBox[RowBox[List["Log", "[", "\[Pi]", "]"]], "2"]]], "+", RowBox[List["60", " ", RowBox[List["Log", "[", "2", "]"]], " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "3"]]], "+", RowBox[List["15", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "4"]]], "+", RowBox[List["30", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "m", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Log", "[", "8", "]"]], "-", RowBox[List["3", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]]]], ")"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]]]], ")"]]]], "-", RowBox[List["30", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Log", "[", "8", "]"]], "-", RowBox[List["3", " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]], "+", RowBox[List["45", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]], "2"]]], "+", RowBox[List["60", " ", RowBox[List["Log", "[", "2", "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", "m"]], "]"]]]], "+", RowBox[List["60", " ", RowBox[List["PolyGamma", "[", "m", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "2", "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], "3"], "-", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "8", "]"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "-", RowBox[List[RowBox[List["Log", "[", "8", "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "m"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", "m"]], "]"]]]], ")"]]]], "-", RowBox[List["15", " ", RowBox[List["PolyGamma", "[", RowBox[List["3", ",", "m"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", " ", "m"]]]], ")"]], "4"]]], "5760"], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["n", "+", RowBox[List["2", " ", "m"]]]], "]"]], "5"]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List["n", "+", RowBox[List["2", " ", "m"]]]], ")"]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["n", "\[Rule]", RowBox[List[RowBox[List["-", "2"]], " ", "m"]]]], ")"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29