|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.32.19.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Re[FresnelS[x + I y]] ==
Sum[((-1)^(j + k) 2^(1 + 2 k) Pi^(1/2 + 2 k) x^(3 - 2 j + 4 k) y^(2 j)
Gamma[3/2 + 2 k])/((2 j)! (4 k - 2 j + 3)!), {k, 0, Infinity},
{j, 0, 2 k + 1}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Re", "[", RowBox[List["FresnelS", "[", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], "]"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["2", "k"]], "+", "1"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "k"]]], " ", SuperscriptBox["2", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["x", RowBox[List["3", "-", RowBox[List["2", " ", "j"]], "+", RowBox[List["4", " ", "k"]]]]], " ", SuperscriptBox["y", RowBox[List["2", " ", "j"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", RowBox[List["2", " ", "k"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "j"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "k"]], "-", RowBox[List["2", "j"]], "+", "3"]], ")"]], "!"]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> x </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> y </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <real /> <apply> <ci> FresnelS </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> x </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Re", "[", RowBox[List["FresnelS", "[", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "y_"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "k"]]], " ", SuperscriptBox["2", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["x", RowBox[List["3", "-", RowBox[List["2", " ", "j"]], "+", RowBox[List["4", " ", "k"]]]]], " ", SuperscriptBox["y", RowBox[List["2", " ", "j"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", RowBox[List["2", " ", "k"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "j"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "k"]], "-", RowBox[List["2", " ", "j"]], "+", "3"]], ")"]], "!"]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|