|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.05.06.0039.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1/Gamma[z + \[Epsilon]] \[Proportional]
(1/Gamma[z]) Sum[(k + 1) Sum[(((-1)^r Binomial[k, r])/(1 + r))
Subscript[p, r, k] \[Epsilon]^k, {r, 0, k}], {k, 0, Infinity}] /;
(\[Epsilon] -> 0) && Subscript[p, j, 0] == 1 &&
Subscript[p, j, k] == (1/k) Sum[(j m - k + m) Subscript[b, m]
Subscript[p, j, k - m], {m, 1, k}] && Subscript[b, k] ==
Derivative[k][Gamma][z]/(Gamma[z] k!) && Element[k, Integers] && k >= 0 &&
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["z", "+", "\[Epsilon]"]], "]"]]], "\[Proportional]", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", "z", "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "r"]], "]"]]]], RowBox[List["1", "+", "r"]]], SubscriptBox["p", RowBox[List["r", ",", "k"]]], SuperscriptBox["\[Epsilon]", "k"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["\[Epsilon]", "\[Rule]", "0"]], ")"]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", RowBox[List[FractionBox["1", "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], " ", SubscriptBox["b", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]]]]]], "\[And]", RowBox[List[SubscriptBox["b", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]], RowBox[List[RowBox[List["Gamma", "[", "z", "]"]], " ", RowBox[List["k", "!"]]]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> ϵ </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ∝ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> r </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity, Rule[Editable, True]]], List[TagBox["r", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msub> <mi> p </mi> <mrow> <mi> r </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> ⁢ </mo> <msup> <mi> ϵ </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> ϵ </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <mo>  </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> k </mi> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mi> m </mi> </msub> <mo> ⁢ </mo> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo>  </mo> <mfrac> <mrow> <msup> <mi> Γ </mi> <semantics> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "k", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> z </ci> <ci> ϵ </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <power /> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> r </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> r </ci> <ci> k </ci> </apply> <apply> <power /> <ci> ϵ </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> ϵ </ci> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> j </ci> <ci> m </ci> </apply> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> k </ci> </degree> </bvar> <apply> <ci> Gamma </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> z </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <ci> ℕ </ci> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["z_", "+", "\[Epsilon]_"]], "]"]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "r"]], "]"]]]], ")"]], " ", SubscriptBox["p", RowBox[List["r", ",", "k"]]], " ", SuperscriptBox["\[Epsilon]", "k"]]], RowBox[List["1", "+", "r"]]]]]]]]], RowBox[List["Gamma", "[", "z", "]"]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["\[Epsilon]", "\[Rule]", "0"]], ")"]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], " ", SubscriptBox["b", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]], "k"]]], "&&", RowBox[List[SubscriptBox["b", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]], RowBox[List[RowBox[List["Gamma", "[", "z", "]"]], " ", RowBox[List["k", "!"]]]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|