|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.05.20.0004.02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[Gamma[z], {z, n}] == Integrate[(t^(z - 1) Log[t]^n)/E^t,
{t, 1, Infinity}] + (((-1)^n n!)/z^(n + 1)) HypergeometricPFQ[
{Subscript[z, 1], Subscript[z, 2], \[Ellipsis], Subscript[z, n + 1]},
{1 + Subscript[z, 1], 1 + Subscript[z, 2], \[Ellipsis],
1 + Subscript[z, n + 1]}, -1] /;
Subscript[z, 1] == Subscript[z, 2] == \[Ellipsis] == Subscript[z, n + 1] ==
z && Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["Gamma", "[", "z", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "1", "\[Infinity]"], RowBox[List[SuperscriptBox["t", RowBox[List["z", "-", "1"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "t", "]"]], "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t"]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "+", " ", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["n", "!"]]]], SuperscriptBox["z", RowBox[List["n", "+", "1"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["z", RowBox[List["n", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["z", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["z", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["z", RowBox[List["n", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["z", "1"], "\[Equal]", SubscriptBox["z", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["z", RowBox[List["n", "+", "1"]]], "\[Equal]", "z"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 1 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mrow> <msup> <mi> t </mi> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mi> n </mi> </msup> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mi> t </mi> </mrow> </msup> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <semantics> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["n", "!"]]]], Pochhammer] </annotation> </semantics> </mrow> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mi> n </mi> </msub> <msub> <mi> F </mi> <mi> n </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["n", TraditionalForm]], SubscriptBox["F", FormBox["n", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["z", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["z", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["z", RowBox[List["n", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["z", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["z", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["z", RowBox[List["n", "+", "1"]]], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mo> … </mo> <mo> ⩵ </mo> <msub> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ⩵ </mo> <mi> z </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> Gamma </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> t </ci> </apply> <ci> n </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["Gamma", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "1", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t", RowBox[List["z", "-", "1"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "t", "]"]], "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t"]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["{", "z", "}"]], ",", RowBox[List["Table", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List["K$1", ",", "2", ",", RowBox[List["1", "+", "n"]]]], "}"]]]], "]"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List[RowBox[List["{", RowBox[List["1", "+", "z"]], "}"]], ",", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", "z"]], ",", RowBox[List["{", RowBox[List["K$1", ",", "2", ",", RowBox[List["1", "+", "n"]]]], "}"]]]], "]"]]]], "]"]], ",", RowBox[List["-", "1"]]]], "]"]]]], SuperscriptBox["z", RowBox[List["n", "+", "1"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|