|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.16.06.0009.02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HarmonicNumber[z] \[Proportional] -(1/(z + n)) + HarmonicNumber[n - 1] +
(Pi^2/3 - Zeta[2, n]) (z + n) - Zeta[3, n] (z + n)^2 +
(Pi^4/45 - Zeta[4, n]) (n + z)^3 - \[Ellipsis] /;
(z -> -n) && Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HarmonicNumber", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["z", "+", "n"]]]]], "+", RowBox[List["HarmonicNumber", "[", RowBox[List["n", "-", "1"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "3"], "-", RowBox[List["Zeta", "[", RowBox[List["2", ",", "n"]], "]"]]]], ")"]], RowBox[List["(", RowBox[List["z", "+", "n"]], ")"]]]], "-", " ", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["3", ",", "n"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "n"]], ")"]], "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "4"], "45"], "-", RowBox[List["Zeta", "[", RowBox[List["4", ",", "n"]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", "z"]], ")"]], "3"]]], " ", "-", "\[Ellipsis]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["-", "n"]]]], ")"]], "\[And]", RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> z </mi> </msub> <mo> ∝ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> + </mo> <mi> n </mi> </mrow> </mfrac> </mrow> <mo> + </mo> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mn> 3 </mn> </mfrac> <mo> - </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["2", Rule[Editable, True]], ",", TagBox["n", Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> , </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["3", Rule[Editable, True]], ",", TagBox["n", Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> π </mi> <mn> 4 </mn> </msup> <mn> 45 </mn> </mfrac> <mo> - </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> , </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox["4", Rule[Editable, True]], ",", TagBox["n", Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mo> … </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HarmonicNumber </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HarmonicNumber </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 45 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <ci> n </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> … </ci> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HarmonicNumber", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["z", "+", "n"]]]]], "+", RowBox[List["HarmonicNumber", "[", RowBox[List["n", "-", "1"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "3"], "-", RowBox[List["Zeta", "[", RowBox[List["2", ",", "n"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "+", "n"]], ")"]]]], "-", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["3", ",", "n"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "n"]], ")"]], "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "4"], "45"], "-", RowBox[List["Zeta", "[", RowBox[List["4", ",", "n"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", "z"]], ")"]], "3"]]], "-", "\[Ellipsis]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["-", "n"]]]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|