  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/06.16.06.0017.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    HarmonicNumber[n] == (1/BernoulliB[n]) 
   (Sum[(BernoulliB[k] BernoulliB[n - k])/k, {k, 1, n}] - 
    Sum[(Binomial[n, k] BernoulliB[k] BernoulliB[n - k])/k, {k, 1, n}]) /; 
 Element[2 n, Integers] && n > 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HarmonicNumber", "[", "n", "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["BernoulliB", "[", "n", "]"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[RowBox[List["BernoulliB", "[", "k", "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["n", "-", "k"]], "]"]]]], "k"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["BernoulliB", "[", "k", "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["n", "-", "k"]], "]"]]]], "k"]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["2", "n"]], "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msub>  <semantics>  <mi> H </mi>  <annotation-xml encoding='MathML-Content'>  <ci> HarmonicNumber </ci>  </annotation-xml>  </semantics>  <mi> n </mi>  </msub>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msub>  <semantics>  <mi> B </mi>  <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation>  </semantics>  <mi> n </mi>  </msub>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> k </mi>  </mfrac>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> B </mi>  <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation>  </semantics>  <mi> k </mi>  </msub>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> B </mi>  <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation>  </semantics>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msub>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> k </mi>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> B </mi>  <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation>  </semantics>  <mi> k </mi>  </msub>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> B </mi>  <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation>  </semantics>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msub>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> HarmonicNumber </ci>  <ci> n </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <ci> BernoulliB </ci>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> BernoulliB </ci>  <ci> k </ci>  </apply>  <apply>  <ci> BernoulliB </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <ci> BernoulliB </ci>  <ci> k </ci>  </apply>  <apply>  <ci> BernoulliB </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <ci> ℕ </ci>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HarmonicNumber", "[", "n_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[RowBox[List["BernoulliB", "[", "k", "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["n", "-", "k"]], "]"]]]], "k"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["BernoulliB", "[", "k", "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["n", "-", "k"]], "]"]]]], "k"]]]]], RowBox[List["BernoulliB", "[", "n", "]"]]], "/;", RowBox[List[RowBox[List[RowBox[List["2", " ", "n"]], "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |