Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HarmonicNumber






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > HarmonicNumber[z,r] > Series representations > Asymptotic series expansions





http://functions.wolfram.com/06.17.06.0020.01









  


  










Input Form





HarmonicNumber[z, n] \[Proportional] Zeta[n] - (n + 2 z + 1)/(2 (z + 1)^n (n - 1)) - (1/(n - 1)!) Sum[((2 k + n - 2)!/((2 k)! (z + 1)^(2 k + n - 1))) BernoulliB[2 k], {k, 1, Infinity}] + Floor[Abs[Arg[z + 1]]/Pi] (((I Pi)^n 2^(n - 1))/(n - 1)!) (I Cot[Pi z] - 1) Sum[((-1)^k k! StirlingS2[n - 1, k] (I Cot[Pi z] + 1)^k)/2^k, {k, 0, n - 1}] /; (Abs[z] -> Infinity) && Element[n, Integers] && n > 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HarmonicNumber", "[", RowBox[List["z", ",", "n"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["Zeta", "[", "n", "]"]], "-", FractionBox[RowBox[List["n", "+", RowBox[List["2", " ", "z"]], "+", "1"]], RowBox[List["2", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "n"], RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]]], "-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "n", "-", "2"]], ")"]], "!"]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", "k"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List[RowBox[List["2", "k"]], "+", "n", "-", "1"]]]]]], RowBox[List["BernoulliB", "[", RowBox[List["2", "k"]], "]"]]]]]]]], "+", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List["z", "+", "1"]], "]"]], "]"]], "\[Pi]"], "]"]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List["n", "-", "1"]]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "z"]], "]"]]]], "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["k", "!"]], " ", RowBox[List["StirlingS2", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "z"]], "]"]]]], "+", "1"]], ")"]], "k"]]], SuperscriptBox["2", "k"]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> z </mi> <mrow> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8733; </mo> <mrow> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;n&quot;, Zeta, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> - </mo> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mtext> </mtext> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mn> 2 </mn> <mi> k </mi> </msup> </mfrac> <mo> &#8290; </mo> <msubsup> <semantics> <mi> &#119982; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[ScriptCapitalS]&quot;, StirlingS2] </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msub> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &gt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HarmonicNumber </ci> <ci> z </ci> <ci> n </ci> </apply> <apply> <plus /> <apply> <ci> Zeta </ci> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> n </ci> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <floor /> <apply> <times /> <apply> <abs /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <pi /> </apply> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> StirlingS2 </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> <apply> <gt /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HarmonicNumber", "[", RowBox[List["z_", ",", "n_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Zeta", "[", "n", "]"]], "-", FractionBox[RowBox[List["n", "+", RowBox[List["2", " ", "z"]], "+", "1"]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "n"], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]]], "-", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "n", "-", "2"]], ")"]], "!"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "k"]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "n", "-", "1"]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], "+", FractionBox[RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List["z", "+", "1"]], "]"]], "]"]], "\[Pi]"], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List["n", "-", "1"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "z"]], "]"]]]], "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["k", "!"]], " ", RowBox[List["StirlingS2", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "z"]], "]"]]]], "+", "1"]], ")"]], "k"]]], SuperscriptBox["2", "k"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02