|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.17.06.0010.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HarmonicNumber[z, r] \[Proportional] ((-1)^r/(r - 1)!) PolyGamma[r - 1, 1] +
(r - 2 z - 1)/(2 (r - 1) z^r) - (1/(r - 1)!)
Sum[((2 k + r - 2)!/((2 k)! z^(2 k + r - 1))) BernoulliB[2 k],
{k, 1, Infinity}] /; Abs[Arg[z]] < Pi && Element[r - 1, Integers] &&
r - 1 > 0 && (Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HarmonicNumber", "[", RowBox[List["z", ",", "r"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], RowBox[List[RowBox[List["(", RowBox[List["r", "-", "1"]], ")"]], "!"]]], RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["r", "-", "1"]], ",", "1"]], "]"]]]], "+", FractionBox[RowBox[List["(", RowBox[List["r", "-", RowBox[List["2", " ", "z"]], "-", "1"]], ")"]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["r", "-", "1"]], ")"]], SuperscriptBox["z", "r"]]]], "-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["r", "-", "1"]], ")"]], "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "r", "-", "2"]], ")"]], "!"]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", "k"]], ")"]], "!"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", "k"]], "+", "r", "-", "1"]]]]]], RowBox[List["BernoulliB", "[", RowBox[List["2", "k"]], "]"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "z", "]"]], "]"]], "<", "\[Pi]"]], "\[And]", RowBox[List[RowBox[List["r", "-", "1"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["r", "-", "1"]], ">", "0"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> z </mi> <mrow> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> r </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> r </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msub> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mi> π </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HarmonicNumber </ci> <ci> z </ci> <ci> r </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> r </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> r </ci> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <arg /> <ci> z </ci> </apply> </apply> <pi /> </apply> <apply> <in /> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HarmonicNumber", "[", RowBox[List["z_", ",", "r_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["r", "-", "1"]], ",", "1"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["r", "-", "1"]], ")"]], "!"]]], "+", FractionBox[RowBox[List["r", "-", RowBox[List["2", " ", "z"]], "-", "1"]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["r", "-", "1"]], ")"]], " ", SuperscriptBox["z", "r"]]]], "-", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "r", "-", "2"]], ")"]], "!"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "k"]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "+", "r", "-", "1"]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["r", "-", "1"]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "z", "]"]], "]"]], "<", "\[Pi]"]], "&&", RowBox[List[RowBox[List["r", "-", "1"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["r", "-", "1"]], ">", "0"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|