Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
InverseErf






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > InverseErf[z1,z2] > Differentiation > Symbolic differentiation > With respect to z2





http://functions.wolfram.com/06.30.20.0005.01









  


  










Input Form





D[InverseErf[Subscript[z, 1], Subscript[z, 2]], {Subscript[z, 2], n}] == KroneckerDelta[n] InverseErf[Subscript[z, 1], Subscript[z, 2]] + (Pi^(n/2)/2^n) E^(n InverseErf[Subscript[z, 1], Subscript[z, 2]]^2) Sum[\[Ellipsis] Sum[KroneckerDelta[Sum[(i - 1) Subscript[j, i], {i, 2, n}], n - 1] (-1)^Sum[Subscript[j, i], {i, 2, n}] (n - 1 + Sum[Subscript[j, i], {i, 2, n}])! Product[(1/Subscript[j, i]!) ((2^(-1 + i) E^InverseErf[Subscript[z, 1], Subscript[z, 2]]^2 Sqrt[Pi] InverseErf[Subscript[z, 1], Subscript[z, 2]]^(1 - i))/ i!)^Subscript[j, i] HypergeometricPFQRegularized[{1/2, 1}, {1 - i/2, (3 - i)/2}, -InverseErf[Subscript[z, 1], Subscript[z, 2]]^2]^Subscript[j, i], {i, 2, n}], {Subscript[j, n], 0, n}], {Subscript[j, 2], 0, n}] /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List[SubscriptBox["z", "2"], ",", "n"]], "}"]]], RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], " ", RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]], "+", " ", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", RowBox[List["n", "/", "2"]]], SuperscriptBox["2", "n"]], SuperscriptBox["\[ExponentialE]", RowBox[List["n", " ", SuperscriptBox[RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["j", "2"], "=", "0"]], "n"], RowBox[List["\[Ellipsis]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["j", "n"], "=", "0"]], "n"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "2"]], "n"], RowBox[List[RowBox[List["(", RowBox[List["i", "-", "1"]], ")"]], " ", SubscriptBox["j", "i"]]]]], ",", RowBox[List["n", "-", "1"]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "2"]], "n"], SubscriptBox["j", "i"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1", "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "2"]], "n"], SubscriptBox["j", "i"]]]]], ")"]], "!"]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["i", "=", "2"]], "n"], RowBox[List[FractionBox["1", RowBox[List[SubscriptBox["j", "i"], "!"]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "i"]]], " ", SuperscriptBox["\[ExponentialE]", SuperscriptBox[RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "2"]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], RowBox[List["1", "-", "i"]]]]], RowBox[List["i", "!"]]], ")"]], SubscriptBox["j", "i"]], SuperscriptBox[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", FractionBox["i", "2"]]], ",", FractionBox[RowBox[List["3", "-", "i"]], "2"]]], "}"]], ",", RowBox[List["-", SuperscriptBox[RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "2"]]]]], "]"]], SubscriptBox["j", "i"]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mi> n </mi> </msubsup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mi> &#960; </mi> <mrow> <mi> n </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mn> 2 </mn> <mi> n </mi> </msup> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> n </mi> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mo> &#8230; </mo> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> j </mi> <mi> n </mi> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> j </mi> <mi> i </mi> </msub> </mrow> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> n </mi> </munderover> <msub> <mi> j </mi> <mi> i </mi> </msub> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> n </mi> </munderover> <msub> <mi> j </mi> <mi> i </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msub> <mi> j </mi> <mi> i </mi> </msub> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> i </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> i </mi> </mrow> </msup> </mrow> <mrow> <mi> i </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> <msub> <mi> j </mi> <mi> i </mi> </msub> </msup> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> i </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> i </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mrow> <msup> <mi> erf </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[&quot;i&quot;, &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;3&quot;, &quot;-&quot;, &quot;i&quot;]], &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[RowBox[List[SuperscriptBox[&quot;erf&quot;, RowBox[List[&quot;-&quot;, &quot;1&quot;]]], &quot;(&quot;, RowBox[List[SubscriptBox[&quot;z&quot;, &quot;1&quot;], &quot;,&quot;, SubscriptBox[&quot;z&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> <msub> <mi> j </mi> <mi> i </mi> </msub> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> n </ci> </list> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> KroneckerDelta </ci> <ci> n </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <ci> &#8230; </ci> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> j </ci> <ci> n </ci> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <plus /> <ci> i </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <ci> i </ci> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> j </ci> <ci> i </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> j </ci> <ci> i </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <apply> <ci> Subscript </ci> <ci> j </ci> <ci> i </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> i </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> i </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <ci> i </ci> </apply> </apply> <apply> <power /> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 1 </cn> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> i </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> InverseErf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <ci> i </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["z_", "2"], ",", "n_"]], "}"]]]]], RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], " ", RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["zz", "1"], ",", SubscriptBox["zz", "2"]]], "]"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", RowBox[List["n", "/", "2"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["n", " ", SuperscriptBox[RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["zz", "1"], ",", SubscriptBox["zz", "2"]]], "]"]], "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["j", "2"], "=", "0"]], "n"], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["j", "n"], "=", "0"]], "n"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "2"]], "n"], RowBox[List[RowBox[List["(", RowBox[List["i", "-", "1"]], ")"]], " ", SubscriptBox["j", "i"]]]]], ",", RowBox[List["n", "-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "2"]], "n"], SubscriptBox["j", "i"]]]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1", "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "2"]], "n"], SubscriptBox["j", "i"]]]]], ")"]], "!"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["i", "=", "2"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "i"]]], " ", SuperscriptBox["\[ExponentialE]", SuperscriptBox[RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["zz", "1"], ",", SubscriptBox["zz", "2"]]], "]"]], "2"]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["zz", "1"], ",", SubscriptBox["zz", "2"]]], "]"]], RowBox[List["1", "-", "i"]]]]], RowBox[List["i", "!"]]], ")"]], SubscriptBox["j", "i"]], " ", SuperscriptBox[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", FractionBox["i", "2"]]], ",", FractionBox[RowBox[List["3", "-", "i"]], "2"]]], "}"]], ",", RowBox[List["-", SuperscriptBox[RowBox[List["InverseErf", "[", RowBox[List[SubscriptBox["zz", "1"], ",", SubscriptBox["zz", "2"]]], "]"]], "2"]]]]], "]"]], SubscriptBox["j", "i"]]]], RowBox[List[SubscriptBox["j", "i"], "!"]]]]]]]]]]]]]]], SuperscriptBox["2", "n"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02