|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.31.06.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseErfc[z] == -Sum[(Subscript[c, k]/(2 k + 1)) ((Sqrt[Pi]/2) (z - 1))^
(2 k + 1), {k, 0, Infinity}] /; Subscript[c, 0] == 1 &&
Subscript[c, k] == Sum[(Subscript[c, m] Subscript[c, k - 1 - m])/
((m + 1) (2 m + 1)), {m, 0, k - 1}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseErfc", "[", "z", "]"]], "\[Equal]", RowBox[List["-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[SubscriptBox["c", "k"], RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], " "]], "2"], RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], ")"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["c", "0"], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], RowBox[List["k", "-", "1"]]], FractionBox[RowBox[List[SubscriptBox["c", "m"], SubscriptBox["c", RowBox[List["k", "-", "1", "-", "m"]]]]], RowBox[List[RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "1"]], ")"]]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> erfc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <msub> <mi> c </mi> <mi> k </mi> </msub> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msqrt> <mi> π </mi> </msqrt> <mtext> </mtext> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 0 </mn> </msub> <mo> ⩵ </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <msub> <mi> c </mi> <mi> m </mi> </msub> <mo> ⁢ </mo> <msub> <mi> c </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msub> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> InverseErfc </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseErfc", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SubscriptBox["c", "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], ")"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["c", "0"], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], RowBox[List["k", "-", "1"]]], FractionBox[RowBox[List[SubscriptBox["c", "m"], " ", SubscriptBox["c", RowBox[List["k", "-", "1", "-", "m"]]]]], RowBox[List[RowBox[List["(", RowBox[List["m", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "1"]], ")"]]]]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|