|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.04.04.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DomainAndRange[Function[{Subscript[n, 1], Subscript[n, 2], \[Ellipsis],
Subscript[n, m]}, Multinomial[Subscript[n, 1], Subscript[n, 2],
\[Ellipsis], Subscript[n, m]]]] ==
PowerSet[Complexes, m] \[LongRightArrow] Complexes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["DomainAndRange", "[", RowBox[List["Function", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["n", "1"], ",", SubscriptBox["n", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["n", "m"]]], "}"]], ",", RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["n", "1"], ",", SubscriptBox["n", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["n", "m"]]], "]"]]]], "]"]], "]"]], " ", "\[Equal]", "\[IndentingNewLine]", RowBox[List[RowBox[List["PowerSet", "[", RowBox[List["Complexes", ",", " ", "m"]], "]"]], "\[LongRightArrow]", "Complexes"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⋆ </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⋆ </mo> <mo> … </mo> <mo> ⋆ </mo> <msub> <mi> n </mi> <mi> m </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⟶ </mo> <semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mo> … </mo> <mo> + </mo> <msub> <mi> n </mi> <mi> m </mi> </msub> </mrow> <mo> ; </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> n </mi> <mi> m </mi> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["n", "1"], "+", SubscriptBox["n", "2"], "+", "\[Ellipsis]", "+", SubscriptBox["n", "m"]]], ";", SubscriptBox["n", "1"]]], ",", SubscriptBox["n", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["n", "m"]]], ")"]], Multinomial, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ∷ </mo> <mrow> <msup> <semantics> <mi> ℂ </mi> <annotation encoding='Mathematica'> TagBox[TagBox[TagBox["\[DoubleStruckCapitalC]", Function[Reals]], Function[Rationals]], Function[Reals]] </annotation> </semantics> <mi> m </mi> </msup> <mo> ⟶ </mo> <mi> ℂ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportion </ci> <apply> <ci> LongRightArrow </ci> <apply> <ci> Star </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> m </ci> </apply> </apply> <apply> <ci> Multinomial </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <ci> LongRightArrow </ci> <apply> <power /> <reals /> <ci> m </ci> </apply> <ci> ℂ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["DomainAndRange", "[", RowBox[List["Function", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["n_", "1"], ",", SubscriptBox["n_", "2"], ",", "\[Ellipsis]_", ",", SubscriptBox["n_", "m_"]]], "}"]], ",", RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["n_", "1"], ",", SubscriptBox["n_", "2"], ",", "\[Ellipsis]_", ",", SubscriptBox["n_", "m_"]]], "]"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["PowerSet", "[", RowBox[List["Complexes", ",", "m"]], "]"]], "\[LongRightArrow]", "Complexes"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|