Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Multinomial






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Multinomial[n1,n2,...,nm] > Differentiation > Symbolic differentiation





http://functions.wolfram.com/06.04.20.0003.02









  


  










Input Form





D[Multinomial[Subscript[n, 1], Subscript[n, 2], \[Ellipsis], Subscript[n, m]], {Subscript[n, m], u}] == (((-1)^u u! Gamma[s + 1]^(u + 1))/Product[Gamma[Subscript[n, k] + 1] Gamma[Subscript[n, m] - s], {k, 1, m - 1}]) HypergeometricPFQRegularized[{Subscript[a, 1], Subscript[a, 2], \[Ellipsis], Subscript[a, u + 1], s - Subscript[n, m] + 1}, {1 + Subscript[a, 1], 1 + Subscript[a, 2], \[Ellipsis], 1 + Subscript[a, u + 1]}, 1] /; Subscript[a, 1] == Subscript[a, 2] == \[Ellipsis] == Subscript[a, u + 1] == s + 1 && s == Sum[Subscript[n, k], {k, 1, m}] && Element[u, Integers] && u >= 0 && !(Element[s - Subscript[n, m], Integers] && s - Subscript[n, m] >= 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List[SubscriptBox["n", "m"], ",", "u"]], "}"]]], RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["n", "1"], ",", SubscriptBox["n", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["n", "m"]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", RowBox[List["u", "!"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["s", "+", "1"]], "]"]], RowBox[List["u", "+", "1"]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["m", "-", "1"]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["n", "k"], "+", "1"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["n", "m"], "-", "s"]], "]"]]]]]]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["u", "+", "1"]]], ",", RowBox[List["s", "-", SubscriptBox["n", "m"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["a", RowBox[List["u", "+", "1"]]]]]]], "}"]], ",", "1"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "\[Equal]", SubscriptBox["a", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["u", "+", "1"]]], "\[Equal]", RowBox[List["s", "+", "1"]]]], "\[And]", RowBox[List["s", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", " ", "=", " ", "1"]], RowBox[List[" ", "m"]]], SubscriptBox["n", "k"]]]]], "\[And]", " ", RowBox[List["u", "\[Element]", "Integers"]], "\[And]", RowBox[List["u", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List["Element", "[", RowBox[List[RowBox[List["s", "-", SubscriptBox["n", "m"]]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[RowBox[List["s", "-", SubscriptBox["n", "m"]]], "\[GreaterEqual]", "0"]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> u </mi> </msup> <semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mo> &#8230; </mo> <mo> + </mo> <msub> <mi> n </mi> <mi> m </mi> </msub> </mrow> <mo> ; </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> n </mi> <mi> m </mi> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[RowBox[List[SubscriptBox[&quot;n&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;n&quot;, &quot;2&quot;], &quot;+&quot;, &quot;\[Ellipsis]&quot;, &quot;+&quot;, SubscriptBox[&quot;n&quot;, &quot;m&quot;]]], &quot;;&quot;, SubscriptBox[&quot;n&quot;, &quot;1&quot;]]], &quot;,&quot;, SubscriptBox[&quot;n&quot;, &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, SubscriptBox[&quot;n&quot;, &quot;m&quot;]]], &quot;)&quot;]], Multinomial, Rule[Editable, True]] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msubsup> <mi> n </mi> <mi> m </mi> <mi> u </mi> </msubsup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> u </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> u </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> u </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> n </mi> <mi> k </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> n </mi> <mi> m </mi> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> u </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mi> u </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> u </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mrow> <mi> s </mi> <mo> - </mo> <msub> <mi> n </mi> <mi> m </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> u </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, RowBox[List[&quot;u&quot;, &quot;+&quot;, &quot;2&quot;]]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], RowBox[List[&quot;u&quot;, &quot;+&quot;, &quot;1&quot;]]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, RowBox[List[&quot;u&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;s&quot;, &quot;-&quot;, SubscriptBox[&quot;n&quot;, &quot;m&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, RowBox[List[&quot;u&quot;, &quot;+&quot;, &quot;1&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;;&quot;, TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mo> &#8230; </mo> <mo> &#10869; </mo> <msub> <mi> a </mi> <mrow> <mi> u </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#10869; </mo> <mrow> <mi> s </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> s </mi> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <msub> <mi> n </mi> <mi> k </mi> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> u </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> s </mi> <mo> - </mo> <msub> <mi> n </mi> <mi> m </mi> </msub> </mrow> <mo> &#8713; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> Multinomial </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> m </ci> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> m </ci> </apply> <ci> u </ci> </list> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> <apply> <factorial /> <ci> u </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> s </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> u </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> u </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <ci> &#8230; </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> u </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> u </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> s </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <eq /> <ci> s </ci> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <in /> <ci> u </ci> <ci> &#8469; </ci> </apply> <apply> <notin /> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> m </ci> </apply> </apply> </apply> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["n_", "m_"], ",", "u_"]], "}"]]]]], RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["n_", "1"], ",", SubscriptBox["n_", "2"], ",", "\[Ellipsis]_", ",", SubscriptBox["n_", "m_"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", RowBox[List["u", "!"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["s", "+", "1"]], "]"]], RowBox[List["u", "+", "1"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["u", "+", "1"]]], ",", RowBox[List["s", "-", SubscriptBox["nn", "m"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["a", RowBox[List["u", "+", "1"]]]]]]], "}"]], ",", "1"]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["m", "-", "1"]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["nn", "k"], "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["nn", "m"], "-", "s"]], "]"]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "\[Equal]", SubscriptBox["a", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["u", "+", "1"]]], "\[Equal]", RowBox[List["s", "+", "1"]]]], "&&", RowBox[List["s", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "m"], SubscriptBox["nn", "k"]]]]], "&&", RowBox[List["u", "\[Element]", "Integers"]], "&&", RowBox[List["u", "\[GreaterEqual]", "0"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["s", "-", SubscriptBox["nn", "m"]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["s", "-", SubscriptBox["nn", "m"]]], "\[GreaterEqual]", "0"]]]], ")"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29