|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.15.03.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PolyGamma[\[Nu], 0] == ComplexInfinity /; Re[\[Nu]] > -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]", ",", "0"]], "]"]], "\[Equal]", InterpretationBox["ComplexInfinity", DirectedInfinity[]]]], "/;", RowBox[List[RowBox[List["Re", "[", "\[Nu]", "]"]], ">", RowBox[List["-", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mi> ν </mi> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ν </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyGamma </ci> <ci> ν </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> OverTilde </ci> <infinity /> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]_", ",", "0"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["ComplexInfinity", "/;", RowBox[List[RowBox[List["Re", "[", "\[Nu]", "]"]], ">", RowBox[List["-", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|